These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 27783985)
1. Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy). Dimuccio LA; Rodrigues N; Larocca F; Pratas J; Amado AM; de Carvalho LAEB Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():704-720. PubMed ID: 27783985 [TBL] [Abstract][Full Text] [Related]
2. First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy). Fontani F; Cilli E; Arena F; Sarno S; Modi A; De Fanti S; Andrews AJ; Latorre A; Abondio P; Larocca F; Lari M; Caramelli D; Gualdi-Russo E; Luiselli D Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33922908 [TBL] [Abstract][Full Text] [Related]
3. Characteristics, distribution, and origin of ferruginous deposits within the Late Ordovician glaciogenic setting of Arabia. Alqubalee A; Salisu AM; Bello AM; Al-Hussaini A; Al-Ramadan K Sci Rep; 2023 Oct; 13(1):18430. PubMed ID: 37891355 [TBL] [Abstract][Full Text] [Related]
4. Patinas developed in environmental burial conditions: the Neolithic steles of Reguers de Seró (Lleida, Spain). Garcia-Valles M; Aulinas M; López-Melción JB; Moya-Garra A Environ Sci Pollut Res Int; 2010 Aug; 17(7):1287-99. PubMed ID: 20213307 [TBL] [Abstract][Full Text] [Related]
6. A Unique Collection of Palaeolithic Painted Portable Art: Characterization of Red and Yellow Pigments from the Parpalló Cave (Spain). Roldán García C; Villaverde Bonilla V; Ródenas Marín I; Murcia Mascarós S PLoS One; 2016; 11(10):e0163565. PubMed ID: 27732605 [TBL] [Abstract][Full Text] [Related]
7. A non-invasive spectroscopic study to evaluate both technological features and conservation state of two types of ancient Roman coloured bricks. Scatigno C; Prieto-Taboada N; Preite Martinez M; Conte AM; Madariaga JM Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():55-63. PubMed ID: 29902771 [TBL] [Abstract][Full Text] [Related]
8. A study of ancient pottery by means of X-ray fluorescence spectroscopy, multivariate statistics and mineralogical analysis. Papachristodoulou C; Oikonomou A; Ioannides K; Gravani K Anal Chim Acta; 2006 Jul; 573-574():347-53. PubMed ID: 17723544 [TBL] [Abstract][Full Text] [Related]
9. Mineralogical and microscopic evaluation of coarse taconite tailings from Minnesota taconite operations. Zanko LM; Niles HB; Oreskovich JA Regul Toxicol Pharmacol; 2008 Oct; 52(1 Suppl):S51-65. PubMed ID: 18166256 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic study of the degradation products in the holy water fonts in Santa Maria della Steccata Church in Parma (Italy). Bersani D; Campani E; Casoli A; Lottici PP; Marino IG Anal Chim Acta; 2008 Mar; 610(1):74-9. PubMed ID: 18267142 [TBL] [Abstract][Full Text] [Related]
12. Characterization of ferruginous cements related with weathering of slag in a temperate anthropogenic beachrock. Arrieta N; Iturregui A; Martínez-Arkarazo I; Murelaga X; Baceta JI; de Diego A; Olazabal MÁ; Madariaga JM Sci Total Environ; 2017 Mar; 581-582():49-65. PubMed ID: 28086132 [TBL] [Abstract][Full Text] [Related]
13. Technological insights on the Early-Middle Bronze Age pottery of Monte Meana cave (Sardinia, Italy). Paglietti G; Tanda G; Melis RT; Musinu A; Cruciani G; Franceschelli M; Cannas C; Mameli V; Casu M Heliyon; 2022 Mar; 8(3):e09171. PubMed ID: 35368527 [TBL] [Abstract][Full Text] [Related]
14. Neolithic ceramic findings from western Sicily. Chemical-physical and mineralogical characterization. Rivarola E; Bellia S; Donato ID; Orecchio S; Ponterio R; Tusa S Ann Chim; 2001; 91(11-12):803-12. PubMed ID: 11836958 [TBL] [Abstract][Full Text] [Related]
15. First evidence of wulfenite in Calabria Region (Southern Italy). Bloise A; Dattola L; Allegretta I; Terzano R; Taranto M; Miriello D Data Brief; 2018 Aug; 19():687-692. PubMed ID: 29900369 [TBL] [Abstract][Full Text] [Related]
16. Analysis of red and yellow ochre samples from Clearwell Caves and Catalhöyük by vibrational spectroscopy and other techniques. Mortimore JL; Marshall LJ; Almond MJ; Hollins P; Matthews W Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1179-88. PubMed ID: 15084337 [TBL] [Abstract][Full Text] [Related]
17. Faunal migration in late-glacial central Italy: implications for human resource exploitation. Pellegrini M; Donahue RE; Chenery C; Evans J; Lee-Thorp J; Montgomery J; Mussi M Rapid Commun Mass Spectrom; 2008 Jun; 22(11):1714-26. PubMed ID: 18537188 [TBL] [Abstract][Full Text] [Related]
18. Core-Shell Processing of Natural Pigment: Upper Palaeolithic Red Ochre from Lovas, Hungary. Sajó IE; Kovács J; Fitzsimmons KE; Jáger V; Lengyel G; Viola B; Talamo S; Hublin JJ PLoS One; 2015; 10(7):e0131762. PubMed ID: 26147808 [TBL] [Abstract][Full Text] [Related]
19. Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples. Olivares M; Tarriño A; Murelaga X; Baceta JI; Castro K; Etxebarria N Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):492-7. PubMed ID: 19208495 [TBL] [Abstract][Full Text] [Related]
20. A non-destructive spectroscopic study of the decoration of archaeological pottery: from matt-painted bichrome ceramic sherds (southern Italy, VIII-VII B.C.) to an intact Etruscan cinerary urn. Bruni S; Guglielmi V; Della Foglia E; Castoldi M; Bagnasco Gianni G Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 191():88-97. PubMed ID: 28992462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]