These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 27784249)

  • 1. Mesoporous Silica Molecular Sieve based Nanocarriers: Transpiring Drug Dissolution Research.
    Pattnaik S; Pathak K
    Curr Pharm Des; 2017; 23(3):467-480. PubMed ID: 27784249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoporous silica formulation strategies for drug dissolution enhancement: a review.
    McCarthy CA; Ahern RJ; Dontireddy R; Ryan KB; Crean AM
    Expert Opin Drug Deliv; 2016; 13(1):93-108. PubMed ID: 26549623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs.
    Maleki A; Kettiger H; Schoubben A; Rosenholm JM; Ambrogi V; Hamidi M
    J Control Release; 2017 Sep; 262():329-347. PubMed ID: 28778479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel scheme for rapid synthesis of hollow mesoporous silica nanoparticles (HMSNs) and their application as an efficient delivery carrier for oral bioavailability improvement of poorly water-soluble BCS type II drugs.
    Li T; Geng T; Md A; Banerjee P; Wang B
    Colloids Surf B Biointerfaces; 2019 Apr; 176():185-193. PubMed ID: 30616109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of mesoporous materials as excipients for innovative drug delivery and formulation.
    Shen SC; Ng WK; Chia LS; Dong YC; Tan RB
    Curr Pharm Des; 2013; 19(35):6270-89. PubMed ID: 23470004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of surface area of silica particles on dissolution rate and oral bioavailability of poorly water soluble drugs: a case study with aceclofenac.
    Kumar D; Sailaja Chirravuri SV; Shastri NR
    Int J Pharm; 2014 Jan; 461(1-2):459-68. PubMed ID: 24368106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Drug-Silica Electrostatic Interactions on Drug Release from Mesoporous Silica-Based Oral Delivery Systems.
    Hate SS; Reutzel-Edens SM; Taylor LS
    Mol Pharm; 2020 Sep; 17(9):3435-3446. PubMed ID: 32790416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous systems for poorly soluble drugs.
    Xu W; Riikonen J; Lehto VP
    Int J Pharm; 2013 Aug; 453(1):181-97. PubMed ID: 22990124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges.
    Bremmell KE; Prestidge CA
    Drug Dev Ind Pharm; 2019 Mar; 45(3):349-358. PubMed ID: 30411991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique.
    Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C
    Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs.
    Vialpando M; Martens JA; Van den Mooter G
    Ther Deliv; 2011 Aug; 2(8):1079-91. PubMed ID: 22833866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole.
    Kinnari P; Mäkilä E; Heikkilä T; Salonen J; Hirvonen J; Santos HA
    Int J Pharm; 2011 Jul; 414(1-2):148-56. PubMed ID: 21601623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular-level insight into hot-melt loading and drug release from mesoporous silica carriers.
    Lizoňová D; Mužík J; Šoltys M; Beránek J; Kazarian SG; Štěpánek F
    Eur J Pharm Biopharm; 2018 Sep; 130():327-335. PubMed ID: 30012403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization.
    Abd-Elrahman AA; El Nabarawi MA; Hassan DH; Taha AA
    Drug Deliv; 2016 Nov; 23(9):3387-3398. PubMed ID: 27167529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Drug with Good Glass-Forming Ability Loaded Mesoporous Silica Nanoparticles and Its Impact Toward in vitro and in vivo Studies.
    Budiman A; Anastasya G; Handini AL; Lestari IN; Subra L; Aulifa DL
    Int J Nanomedicine; 2024; 19():2199-2225. PubMed ID: 38465205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation.
    Wang Y; Cui Y; Zhao Y; Zhao Q; He B; Zhang Q; Wang S
    J Colloid Interface Sci; 2018 Mar; 513():736-747. PubMed ID: 29220688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of commercially available mesoporous silica for drug dissolution enhancement in oral drug delivery.
    Baumgartner A; Planinšek O
    Eur J Pharm Sci; 2021 Dec; 167():106015. PubMed ID: 34547382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of New Bexarotene-loaded Mesoporous Silica Systems for Topical Pharmaceutical Formulations.
    Vasile A; Ignat M; Zaltariov MF; Sacarescu L; Stoleriu I; Draganescu D; Dumitras M; Ochiuz L
    Acta Chim Slov; 2018 Mar; 65(1):97-107. PubMed ID: 29562115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous materials and nanocrystals for enhancing the dissolution behavior of poorly water-soluble drugs.
    Santos HA; Peltonen L; Limnell T; Hirvonen J
    Curr Pharm Biotechnol; 2013; 14(10):926-38. PubMed ID: 24372243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study of the Use of Mesoporous Carbon and Mesoporous Silica as Drug Carriers for Oral Delivery of the Water-Insoluble Drug Carvedilol.
    Han C; Huang H; Dong Y; Sui X; Jian B; Zhu W
    Molecules; 2019 May; 24(9):. PubMed ID: 31067732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.