These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 27784764)
1. Disulphide bond restrains the C-terminal region of thermostable direct hemolysin during folding to promote oligomerization. Kundu N; Tichkule S; Pandit SB; Chattopadhyay K Biochem J; 2017 Jan; 474(2):317-331. PubMed ID: 27784764 [TBL] [Abstract][Full Text] [Related]
2. Relationship between heat-induced fibrillogenicity and hemolytic activity of thermostable direct hemolysin and a related hemolysin of Vibrio parahaemolyticus. Ohnishi K; Nakahira K; Unzai S; Mayanagi K; Hashimoto H; Shiraki K; Honda T; Yanagihara I FEMS Microbiol Lett; 2011 May; 318(1):10-7. PubMed ID: 21291495 [TBL] [Abstract][Full Text] [Related]
3. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. Yanagihara I; Nakahira K; Yamane T; Kaieda S; Mayanagi K; Hamada D; Fukui T; Ohnishi K; Kajiyama S; Shimizu T; Sato M; Ikegami T; Ikeguchi M; Honda T; Hashimoto H J Biol Chem; 2010 May; 285(21):16267-74. PubMed ID: 20335168 [TBL] [Abstract][Full Text] [Related]
4. Computational characterization and molecular dynamics simulation of the thermostable direct hemolysin-related hemolysin (TRH) amplified from Vibrio parahaemolyticus. Paria P; Chakraborty HJ; Behera BK; Das Mohapatra PK; Das BK Microb Pathog; 2019 Feb; 127():172-182. PubMed ID: 30503957 [TBL] [Abstract][Full Text] [Related]
5. N-Terminal Region of Kundu N; Verma P; Kumar A; Dhar V; Dutta S; Chattopadhyay K Biochemistry; 2020 Feb; 59(4):605-614. PubMed ID: 31808340 [TBL] [Abstract][Full Text] [Related]
6. Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus. Cai Q; Zhang Y Microb Pathog; 2018 Oct; 123():242-245. PubMed ID: 30031890 [TBL] [Abstract][Full Text] [Related]
7. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin. Pokrajac L; Harris JR; Sarraf N; Palmer M Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633 [TBL] [Abstract][Full Text] [Related]
8. Analysis of functional domains of Vibrio parahaemolyticus thermostable direct hemolysin using monoclonal antibodies. Tang G; Iida T; Yamamoto K; Honda T FEMS Microbiol Lett; 1997 May; 150(2):289-96. PubMed ID: 9170273 [TBL] [Abstract][Full Text] [Related]
9. Current Perspective on the Membrane-Damaging Action of Thermostable Direct Hemolysin, an Atypical Bacterial Pore-forming Toxin. Verma P; Chattopadhyay K Front Mol Biosci; 2021; 8():717147. PubMed ID: 34368235 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into thermostable direct hemolysin of Vibrio parahaemolyticus using single-particle cryo-EM. Mishra S; Kundu N; Pramanick I; Kumar A; Chattopadhyay K; Dutta S Proteins; 2023 Feb; 91(2):137-146. PubMed ID: 36000388 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a new thermostable direct haemolysin produced by a Kanagawa-phenomenon-negative clinical isolate of Vibrio parahaemolyticus. Honda T; Abad-Lapuebla MA; Ni YX; Yamamoto K; Miwatani T J Gen Microbiol; 1991 Feb; 137(2):253-9. PubMed ID: 2016584 [TBL] [Abstract][Full Text] [Related]
12. Demonstration and characterization of simultaneous production of a thermostable direct hemolysin (TDH/I) and a TDH-related hemolysin (TRHx) by a clinically isolated Vibrio parahaemolyticus strain, TH3766. Xu M; Iida T; Yamamoto K; Takarada Y; Miwatani T; Honda T Infect Immun; 1994 Jan; 62(1):166-71. PubMed ID: 8262624 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression of gene encoding the thermostable direct hemolysin from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis of crimson snapper (Lutjanus erythopterus). Cai SH; Wu ZH; Jian JC; Lu YS J Appl Microbiol; 2007 Aug; 103(2):289-96. PubMed ID: 17650188 [TBL] [Abstract][Full Text] [Related]
14. Partial oligomerization of pyolysin induced by a disulfide-tethered mutant. Pokrajac L; Baik C; Harris JR; Sarraf NS; Palmer M Biochem Cell Biol; 2012 Dec; 90(6):709-17. PubMed ID: 23016571 [TBL] [Abstract][Full Text] [Related]
15. Cell-free synthesis of functional thermostable direct hemolysins of Vibrio parahaemolyticus. Bechlars S; Wüstenhagen DA; Drägert K; Dieckmann R; Strauch E; Kubick S Toxicon; 2013 Dec; 76():132-42. PubMed ID: 24060377 [TBL] [Abstract][Full Text] [Related]
16. Molecular basis for the folding of β-helical autotransporter passenger domains. Yuan X; Johnson MD; Zhang J; Lo AW; Schembri MA; Wijeyewickrema LC; Pike RN; Huysmans GHM; Henderson IR; Leyton DL Nat Commun; 2018 Apr; 9(1):1395. PubMed ID: 29643377 [TBL] [Abstract][Full Text] [Related]
17. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus. Nakano M; Takahashi A; Su Z; Harada N; Mawatari K; Nakaya Y BMC Microbiol; 2008 Sep; 8():155. PubMed ID: 18803872 [TBL] [Abstract][Full Text] [Related]
18. The assembly dynamics of the cytolytic pore toxin ClyA. Benke S; Roderer D; Wunderlich B; Nettels D; Glockshuber R; Schuler B Nat Commun; 2015 Feb; 6():6198. PubMed ID: 25652783 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation of a 25 kDa protein is induced by thermostable direct hemolysin of Vibrio parahaemolyticus. Yoh M; Tang GQ; Iida T; Morinaga N; Noda M; Honda T Int J Biochem Cell Biol; 1996 Dec; 28(12):1365-9. PubMed ID: 9022294 [TBL] [Abstract][Full Text] [Related]
20. Controlling pore assembly of staphylococcal gamma-haemolysin by low temperature and by disulphide bond formation in double-cysteine LukF mutants. Nguyen VT; Higuchi H; Kamio Y Mol Microbiol; 2002 Sep; 45(6):1485-98. PubMed ID: 12354220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]