BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27784806)

  • 21. Is there an intermuscular relationship in voluntary activation capacities and contractile kinetics?
    Hucteau E; Jubeau M; Cornu C; Cattagni T
    Eur J Appl Physiol; 2020 Feb; 120(2):513-526. PubMed ID: 31925519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Knee Joint Angle on Regional Hamstrings Activation During Isometric Knee-Flexion Exercise.
    Kawama R; Okudaira M; Fukuda DH; Maemura H; Tanigawa S
    J Sport Rehabil; 2021 Feb; 30(6):905-910. PubMed ID: 33571961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Do additional inputs change maximal voluntary motor unit firing rates after spinal cord injury?
    Zijdewind I; Gant K; Bakels R; Thomas CK
    Neurorehabil Neural Repair; 2012 Jan; 26(1):58-67. PubMed ID: 21903974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximal and submaximal isometric torque is elevated immediately following highly controlled active stretches of the hamstrings.
    Chapman N; Whitting J; Broadbent S; Crowley-McHattan Z; Meir R
    J Electromyogr Kinesiol; 2021 Feb; 56():102500. PubMed ID: 33242749
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-of-day effects on motor unit firing and muscle contractile properties in humans.
    Hirono T; Igawa K; Okudaira M; Takeda R; Nishikawa T; Watanabe K
    J Neurophysiol; 2024 Mar; 131(3):472-479. PubMed ID: 38264791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Altered Knee Angle and Muscular Contraction Type on Electromyographic Activity of Hamstring Muscles during 45° Hip Extension Exercise.
    Keerasomboon T; Mineta S; Hirose N
    J Sports Sci Med; 2020 Dec; 19(4):630-636. PubMed ID: 33239935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hamstring stiffness pattern during contraction in healthy individuals: analysis by ultrasound-based shear wave elastography.
    Mendes B; Firmino T; Oliveira R; Neto T; Infante J; Vaz JR; Freitas SR
    Eur J Appl Physiol; 2018 Nov; 118(11):2403-2415. PubMed ID: 30109503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An examination of a potential organized motor unit firing rate and recruitment scheme of an antagonist muscle during isometric contractions.
    Reece TM; Herda TJ
    J Neurophysiol; 2021 Jun; 125(6):2094-2106. PubMed ID: 33909509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromechanical delay of the hamstrings following semitendinosus tendon autografts in return to competition athletes.
    Morris N; Jordan MJ; Heard M; Herzog W
    Eur J Appl Physiol; 2021 Jul; 121(7):1849-1858. PubMed ID: 33709206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Hip Flexion Angle on Unilateral and Bilateral Nordic Hamstring Exercise Torque and High-Density Electromyography Activity.
    Hegyi A; Lahti J; Giacomo JP; Gerus P; Cronin NJ; Morin JB
    J Orthop Sports Phys Ther; 2019 Aug; 49(8):584-592. PubMed ID: 30913969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ankle joint position on triceps surae contractile properties and motor unit discharge rates.
    Hali K; Zero AM; Rice CL
    Physiol Rep; 2021 Jan; 8(24):e14680. PubMed ID: 33356017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motor unit firing rates and contractile properties in tibialis anterior of young and old men.
    Connelly DM; Rice CL; Roos MR; Vandervoort AA
    J Appl Physiol (1985); 1999 Aug; 87(2):843-52. PubMed ID: 10444648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles.
    Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC
    J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decrease of knee flexion torque in patients with ACL reconstruction: combined analysis of the architecture and function of the knee flexor muscles.
    Makihara Y; Nishino A; Fukubayashi T; Kanamori A
    Knee Surg Sports Traumatol Arthrosc; 2006 Apr; 14(4):310-7. PubMed ID: 16208458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Between-muscle differences in coactivation assessed using elastography.
    Avrillon S; Hug F; Guilhem G
    J Electromyogr Kinesiol; 2018 Dec; 43():88-94. PubMed ID: 30265870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of neuromuscular electrical stimulation on contralateral quadriceps function.
    Cattagni T; Lepers R; Maffiuletti NA
    J Electromyogr Kinesiol; 2018 Feb; 38():111-118. PubMed ID: 29202270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relationship between wire EMG activity, muscle length, and torque of the hamstrings.
    Mohamed O; Perry J; Hislop H
    Clin Biomech (Bristol, Avon); 2002 Oct; 17(8):569-79. PubMed ID: 12243716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differences in the Electromyographic Activity of the Hamstring, Gluteus Maximus, and Erector Spinae Muscles in a Variety of Kinetic Changes.
    Hirose N; Tsuruike M
    J Strength Cond Res; 2018 Dec; 32(12):3357-3363. PubMed ID: 30102684
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hamstrings force-length relationships and their implications for angle-specific joint torques: a narrative review.
    Kellis E; Blazevich AJ
    BMC Sports Sci Med Rehabil; 2022 Sep; 14(1):166. PubMed ID: 36064431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Firing rate trajectories of human motor units during activity-dependent muscle potentiation.
    Zero AM; Kirk EA; Rice CL
    J Appl Physiol (1985); 2022 Feb; 132(2):402-412. PubMed ID: 34913736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.