BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27784984)

  • 1. Clinical, optical coherence tomography, and fundus autofluorescence findings in patients with intraocular tumors.
    Samuelsson D; Sznage M; Engelsberg K; Wittström E
    Clin Ophthalmol; 2016; 10():1953-1964. PubMed ID: 27784984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundus autofluorescence and optical coherence tomography findings in choroidal melanocytic lesions.
    Materin MA; Raducu R; Bianciotto C; Shields CL
    Middle East Afr J Ophthalmol; 2010 Jul; 17(3):201-6. PubMed ID: 20844674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of fundus autofluorescence with fluorescein and indocyanine green angiography in choroidal melanocytic lesions.
    Gündüz K; Pulido JS; Pulido JE; Link T
    Retina; 2008 Oct; 28(9):1257-64. PubMed ID: 18626422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of fundus autofluorescence in choroidal melanocytic lesions.
    Gündüz K; Pulido JS; Ezzat K; Salomao D; Hann C
    Eye (Lond); 2009 Mar; 23(3):497-503. PubMed ID: 18670456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of optical coherence tomography in verifying the specificity of ultrasonography in detecting subtle subretinal fluid associated with small choroidal melanocytic tumors.
    Krema H; Habal S; Gonzalez JE; Pavlin CJ
    Retina; 2014 Feb; 34(2):360-5. PubMed ID: 23807190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundus autofluorescence of choroidal melanocytic lesions and the effect of treatment.
    Gündüz K; Pulido JS; Bakri SJ; Amselem L; Petit-Fond E; Link T
    Trans Am Ophthalmol Soc; 2007; 105():172-8; discussion 178-9. PubMed ID: 18427607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Fundus Autofluorescence after Anti-vascular Endothelial Growth Factor According to the Type of Choroidal Neovascularization in Age-related Macular Degeneration.
    Lee JY; Chung H; Kim HC
    Korean J Ophthalmol; 2016 Feb; 30(1):17-24. PubMed ID: 26865799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swept-source optical coherence tomographic findings of choroidal osteoma.
    Hayashi Y; Mitamura Y; Egawa M; Semba K; Nagasawa T
    Case Rep Ophthalmol; 2014 May; 5(2):195-202. PubMed ID: 25120475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared fundus autofluorescence in subclinical best vitelliform macular dystrophy.
    Parodi MB; Iacono P; Del Turco C; Bandello F
    Am J Ophthalmol; 2014 Dec; 158(6):1247-1252.e2. PubMed ID: 25174897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fundus autofluorescence in choroidal melanocytic lesions.
    Gündüz K; Pulido JS; Bakri SJ; Petit-Fond E
    Retina; 2007; 27(6):681-7. PubMed ID: 17621175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of wide-field autofluorescence imaging and scanning laser ophthalmoscopy in differentiation of choroidal pigmented lesions.
    Reznicek L; Stumpf C; Seidensticker F; Kampik A; Neubauer AS; Kernt M
    Int J Ophthalmol; 2014; 7(4):697-703. PubMed ID: 25161946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetic macular edema: fundus autofluorescence and functional correlations.
    Vujosevic S; Casciano M; Pilotto E; Boccassini B; Varano M; Midena E
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):442-8. PubMed ID: 20720226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical coherence tomography in the evaluation of retinal changes associated with suspicious choroidal melanocytic tumors.
    Espinoza G; Rosenblatt B; Harbour JW
    Am J Ophthalmol; 2004 Jan; 137(1):90-5. PubMed ID: 14700649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swept source optical coherence tomography imaging of a series of choroidal tumours.
    Filloy A; Caminal JM; Arias L; Jordán S; Català J
    Can J Ophthalmol; 2015 Jun; 50(3):242-8. PubMed ID: 26040226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy.
    Sayegh RG; Simader C; Scheschy U; Montuoro A; Kiss C; Sacu S; Kreil DP; Prünte C; Schmidt-Erfurth U
    Ophthalmology; 2011 Sep; 118(9):1844-51. PubMed ID: 21496928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundus Autofluorescence Changes After Ranibizumab Treatment for Subfoveal Choroidal Neovascularization Secondary to Pathologic Myopia.
    Parodi MB; Iacono P; Sacconi R; Iuliano L; Bandello F
    Am J Ophthalmol; 2015 Aug; 160(2):322-327.e2. PubMed ID: 25935099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundus autofluorescence patterns in primary intraocular lymphoma.
    Casady M; Faia L; Nazemzadeh M; Nussenblatt R; Chan CC; Sen HN
    Retina; 2014 Feb; 34(2):366-72. PubMed ID: 23958842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced depth imaging optical coherence tomography and fundus autofluorescence findings in bilateral choroidal osteoma: a case report.
    Erol MK; Coban DT; Ceran BB; Bulut M
    Arq Bras Oftalmol; 2013; 76(3):189-91. PubMed ID: 23929082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IMPROVED DETECTION AND DIAGNOSIS OF POLYPOIDAL CHOROIDAL VASCULOPATHY USING A COMBINATION OF OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.
    Cheung CMG; Yanagi Y; Akiba M; Tan A; Mathur R; Chan CM; Yeo I; Wong TY
    Retina; 2019 Sep; 39(9):1655-1663. PubMed ID: 29927796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subretinal Fluid Optical Density and Spectral-Domain Optical Coherence Tomography Characteristics for the Diagnosis of Circumscribed Choroidal Hemangioma.
    Zur D; Frenkel S; Leshno A; Iglicki M; Ben-Artzi Cohen N; Khoury A; Martínez Cartier M; Barak A; Moroz I; Loewenstein A; Neudorfer M; Vishnevskia-Dai V
    Ophthalmologica; 2019; 241(4):195-201. PubMed ID: 30396183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.