These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27785508)

  • 61. Experimental investigation on focusing characteristics of a He-Ne laser using circular Fresnel zone plate for high-precision alignment of linear accelerators.
    Suwada T; Satoh M; Telada S; Minoshima K
    Rev Sci Instrum; 2012 May; 83(5):053301. PubMed ID: 22667611
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.
    Keskinbora K; Grévent C; Eigenthaler U; Weigand M; Schütz G
    ACS Nano; 2013 Nov; 7(11):9788-97. PubMed ID: 24151983
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tunable protein harmonic diffractive micro-optical elements.
    Sun YL; Liu DX; Dong WF; Chen QD; Sun HB
    Opt Lett; 2012 Jul; 37(14):2973-5. PubMed ID: 22825196
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fresnel Interferometric Imager: ground-based prototype.
    Serre D; Deba P; Koechlin L
    Appl Opt; 2009 May; 48(15):2811-20. PubMed ID: 19458729
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device.
    Yang C; Shi K; Edwards P; Liu Z
    Opt Express; 2010 Nov; 18(23):23529-34. PubMed ID: 21164696
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhancement of low-spatial-frequency components by a new phase-contrast STEM using a probe formed with an amplitude Fresnel zone plate.
    Tomita M; Nagatani Y; Murata K; Momose A
    Ultramicroscopy; 2020 Nov; 218():113089. PubMed ID: 32896830
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tunable-focus flat liquid-crystal diffractive lens.
    Valley P; Mathine DL; Dodge MR; Schwiegerling J; Peyman G; Peyghambarian N
    Opt Lett; 2010 Feb; 35(3):336-8. PubMed ID: 20125713
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Generation of annular beam by a novel class of Fresnel zone plate.
    Sabatyan A; Meshginqalam B
    Appl Opt; 2014 Sep; 53(26):5995-6000. PubMed ID: 25321680
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optofluidic light modulator integrated in lab-on-a-chip.
    Paiè P; Bragheri F; Claude T; Osellame R
    Opt Express; 2017 Apr; 25(7):7313-7323. PubMed ID: 28380855
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of a multilayer Fresnel zone plate for high-energy synchrotron radiation X-rays by DC sputtering deposition.
    Tamura S; Yasumoto M; Kamijo N; Suzuki Y; Awaji M; Takeuchi A; Takano H; Handa K
    J Synchrotron Radiat; 2002 May; 9(Pt 3):154-9. PubMed ID: 11972370
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optofluidic gradient refractive index resonators using liquid diffusion for tunable unidirectional emission.
    Liu HL; Zuo YF; Zhu XQ; Yang Y
    Lab Chip; 2020 Aug; 20(15):2656-2662. PubMed ID: 32578645
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tunable hard x-ray nanofocusing with Fresnel zone plates fabricated using deep etching.
    Li K; Ali S; Wojcik M; De Andrade V; Huang X; Yan H; Chu YS; Nazaretski E; Pattammattel A; Jacobsen C
    Optica; 2020 May; 7(5):410-416. PubMed ID: 33294496
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Design, fabrication, and evaluation of a multilevel spiral-phase Fresnel zone plate for optical trapping.
    Vijayakumar A; Bhattacharya S
    Appl Opt; 2012 Sep; 51(25):6038-44. PubMed ID: 22945150
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hybrid driving variable-focus optofluidic lens.
    Wang JH; Tang WP; Li LY; Xiao L; Zhou X; Wang QH
    Opt Express; 2019 Nov; 27(24):35203-35215. PubMed ID: 31878693
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fractal zone plates.
    Saavedra G; Furlan WD; Monsoriu JA
    Opt Lett; 2003 Jun; 28(12):971-3. PubMed ID: 12836749
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Toward the subdiffraction focusing limit of optical superresolution.
    Kalosha VP; Golub I
    Opt Lett; 2007 Dec; 32(24):3540-2. PubMed ID: 18087535
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pinhole diffraction holography for fabrication of high-resolution Fresnel zone plates.
    Sarkar SS; Solak HH; David C; van der Veen JF
    Opt Express; 2014 Jan; 22(2):1402-12. PubMed ID: 24515148
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hydrodynamically tunable optofluidic cylindrical microlens.
    Mao X; Waldeisen JR; Juluri BK; Huang TJ
    Lab Chip; 2007 Oct; 7(10):1303-8. PubMed ID: 17896014
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stimulated-responsive refractive-diffractive biological hydrogel micro-optical element enabling achromatism via femtosecond laser lithography.
    Li Q; Shi H; Xi S; Jiang J; Zhang L; Liu Y
    Opt Express; 2023 Aug; 31(18):29368-29379. PubMed ID: 37710738
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fractal zone plate beam based optical tweezers.
    Cheng S; Zhang X; Ma W; Tao S
    Sci Rep; 2016 Sep; 6():34492. PubMed ID: 27678305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.