These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27785515)

  • 1. Construction of single-cell arrays and assay of cell drug resistance in an integrated microfluidic platform.
    Pang L; Liu W; Tian C; Xu J; Li T; Chen SW; Wang J
    Lab Chip; 2016 Nov; 16(23):4612-4620. PubMed ID: 27785515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell-Derived Tumor-Sphere Formation and Drug-Resistance Assay Using an Integrated Microfluidics.
    Pang L; Ding J; Ge Y; Fan J; Fan SK
    Anal Chem; 2019 Jul; 91(13):8318-8325. PubMed ID: 31148455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A valve-based microfluidic device for on-chip single cell treatments.
    Sun Y; Cai B; Wei X; Wang Z; Rao L; Meng QF; Liao Q; Liu W; Guo S; Zhao X
    Electrophoresis; 2019 Mar; 40(6):961-968. PubMed ID: 30155963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.
    Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J
    Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time detection and monitoring of the drug resistance of single myeloid leukemia cells by diffused total internal reflection.
    Liang L; Jin YX; Zhu XQ; Zhou FL; Yang Y
    Lab Chip; 2018 May; 18(10):1422-1429. PubMed ID: 29713720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell proteolytic activity measurement using microfluidics for rare cell populations.
    Chen YC; Yoon E
    Methods Enzymol; 2019; 628():129-143. PubMed ID: 31668226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a microfluidic strategy for trapping and screening single cells.
    Occhetta P; Licini M; Redaelli A; Rasponi M
    Med Eng Phys; 2016 Jan; 38(1):33-40. PubMed ID: 26651214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of chromosome dynamics of single yeast cells in a microfluidic platform with aperture cell traps.
    Jin SH; Jang SC; Lee B; Jeong HH; Jeong SG; Lee SS; Kim KP; Lee CS
    Lab Chip; 2016 Apr; 16(8):1358-65. PubMed ID: 26980179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic device featuring micro-constrained channels for multi-parametric assessment of cellular biomechanics and high-precision mechanical phenotyping of gastric cells.
    Heng Y; Zheng X; Xu Y; Yan J; Li Y; Sun L; Yang H
    Anal Chim Acta; 2024 May; 1301():342472. PubMed ID: 38553127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell Analysis with Microfluidic Devices.
    Ou X; Chen P; Liu BF
    Anal Sci; 2019 Jun; 35(6):609-618. PubMed ID: 30853696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells.
    Cai B; Ji TT; Wang N; Li XB; He RX; Liu W; Wang G; Zhao XZ; Wang L; Wang Z
    Lab Chip; 2019 Jan; 19(3):422-431. PubMed ID: 30575843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic shuttling for deterministic high-efficiency multiple single-cell capture in a microfluidic chip.
    He CK; Chen YW; Wang SH; Hsu CH
    Lab Chip; 2019 Apr; 19(8):1370-1377. PubMed ID: 30888367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Massive Parallel Analysis of Single Cells in an Integrated Microfluidic Platform.
    Jimenez-Valdes RJ; Rodriguez-Moncayo R; Cedillo-Alcantar DF; Garcia-Cordero JL
    Anal Chem; 2017 May; 89(10):5210-5220. PubMed ID: 28406613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis.
    Lo SJ; Yao DJ
    Int J Mol Sci; 2015 Jul; 16(8):16763-77. PubMed ID: 26213918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.
    Zhou Y; Basu S; Laue E; Seshia AA
    Biosens Bioelectron; 2016 Jul; 81():249-258. PubMed ID: 26963790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level.
    Labib M; Philpott DN; Wang Z; Nemr C; Chen JB; Sargent EH; Kelley SO
    Acc Chem Res; 2020 Aug; 53(8):1445-1457. PubMed ID: 32662263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.