BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27785515)

  • 1. Construction of single-cell arrays and assay of cell drug resistance in an integrated microfluidic platform.
    Pang L; Liu W; Tian C; Xu J; Li T; Chen SW; Wang J
    Lab Chip; 2016 Nov; 16(23):4612-4620. PubMed ID: 27785515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell-Derived Tumor-Sphere Formation and Drug-Resistance Assay Using an Integrated Microfluidics.
    Pang L; Ding J; Ge Y; Fan J; Fan SK
    Anal Chem; 2019 Jul; 91(13):8318-8325. PubMed ID: 31148455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A valve-based microfluidic device for on-chip single cell treatments.
    Sun Y; Cai B; Wei X; Wang Z; Rao L; Meng QF; Liao Q; Liu W; Guo S; Zhao X
    Electrophoresis; 2019 Mar; 40(6):961-968. PubMed ID: 30155963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotypic 3D tumor culture in a reusable platform using pneumatic microfluidics.
    Liu W; Tian C; Yan M; Zhao L; Ma C; Li T; Xu J; Wang J
    Lab Chip; 2016 Oct; 16(21):4106-4120. PubMed ID: 27714003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time detection and monitoring of the drug resistance of single myeloid leukemia cells by diffused total internal reflection.
    Liang L; Jin YX; Zhu XQ; Zhou FL; Yang Y
    Lab Chip; 2018 May; 18(10):1422-1429. PubMed ID: 29713720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell proteolytic activity measurement using microfluidics for rare cell populations.
    Chen YC; Yoon E
    Methods Enzymol; 2019; 628():129-143. PubMed ID: 31668226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a microfluidic strategy for trapping and screening single cells.
    Occhetta P; Licini M; Redaelli A; Rasponi M
    Med Eng Phys; 2016 Jan; 38(1):33-40. PubMed ID: 26651214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring of chromosome dynamics of single yeast cells in a microfluidic platform with aperture cell traps.
    Jin SH; Jang SC; Lee B; Jeong HH; Jeong SG; Lee SS; Kim KP; Lee CS
    Lab Chip; 2016 Apr; 16(8):1358-65. PubMed ID: 26980179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS; Devarenne TP; Han A
    Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic device featuring micro-constrained channels for multi-parametric assessment of cellular biomechanics and high-precision mechanical phenotyping of gastric cells.
    Heng Y; Zheng X; Xu Y; Yan J; Li Y; Sun L; Yang H
    Anal Chim Acta; 2024 May; 1301():342472. PubMed ID: 38553127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell Analysis with Microfluidic Devices.
    Ou X; Chen P; Liu BF
    Anal Sci; 2019 Jun; 35(6):609-618. PubMed ID: 30853696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.
    Cheng YH; Chen YC; Brien R; Yoon E
    Lab Chip; 2016 Oct; 16(19):3708-17. PubMed ID: 27510097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic platform utilizing anchored water-in-oil-in-water double emulsions to create a niche for analyzing single non-adherent cells.
    Cai B; Ji TT; Wang N; Li XB; He RX; Liu W; Wang G; Zhao XZ; Wang L; Wang Z
    Lab Chip; 2019 Jan; 19(3):422-431. PubMed ID: 30575843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic shuttling for deterministic high-efficiency multiple single-cell capture in a microfluidic chip.
    He CK; Chen YW; Wang SH; Hsu CH
    Lab Chip; 2019 Apr; 19(8):1370-1377. PubMed ID: 30888367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massive Parallel Analysis of Single Cells in an Integrated Microfluidic Platform.
    Jimenez-Valdes RJ; Rodriguez-Moncayo R; Cedillo-Alcantar DF; Garcia-Cordero JL
    Anal Chem; 2017 May; 89(10):5210-5220. PubMed ID: 28406613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis.
    Lo SJ; Yao DJ
    Int J Mol Sci; 2015 Jul; 16(8):16763-77. PubMed ID: 26213918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.
    Zhou Y; Basu S; Laue E; Seshia AA
    Biosens Bioelectron; 2016 Jul; 81():249-258. PubMed ID: 26963790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.