BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27785515)

  • 21. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level.
    Labib M; Philpott DN; Wang Z; Nemr C; Chen JB; Sargent EH; Kelley SO
    Acc Chem Res; 2020 Aug; 53(8):1445-1457. PubMed ID: 32662263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device.
    Chen Q; Wu J; Zhang Y; Lin Z; Lin JM
    Lab Chip; 2012 Dec; 12(24):5180-5. PubMed ID: 23108418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput, deterministic single cell trapping and long-term clonal cell culture in microfluidic devices.
    Chen H; Sun J; Wolvetang E; Cooper-White J
    Lab Chip; 2015 Feb; 15(4):1072-83. PubMed ID: 25519528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parallel probing of drug uptake of single cancer cells on a microfluidic device.
    Yang Y; Le Gac S; Terstappen LW; Rho HS
    Electrophoresis; 2018 Feb; 39(3):548-556. PubMed ID: 29193175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated reagent-dispensing system for microfluidic cell biology assays.
    Ly J; Masterman-Smith M; Ramakrishnan R; Sun J; Kokubun B; van Dam RM
    J Lab Autom; 2013 Dec; 18(6):530-41. PubMed ID: 24051515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple and fast microfluidic approach of same-single-cell analysis (SASCA) for the study of multidrug resistance modulation in cancer cells.
    Li X; Chen Y; Li PC
    Lab Chip; 2011 Apr; 11(7):1378-84. PubMed ID: 21327253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Microfluidic Platform for High-throughput Single-cell Isolation and Culture.
    Lin CH; Chang HC; Hsu CH
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27341146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip.
    Chang D; Sakuma S; Kera K; Uozumi N; Arai F
    Lab Chip; 2018 Apr; 18(8):1241-1249. PubMed ID: 29568834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent microfluidic devices for studying gamete and embryo biomechanics.
    Lai D; Takayama S; Smith GD
    J Biomech; 2015 Jun; 48(9):1671-8. PubMed ID: 25801423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fluidic circuit based, high-efficiency and large-scale single cell trap.
    Mi L; Huang L; Li J; Xu G; Wu Q; Wang W
    Lab Chip; 2016 Nov; 16(23):4507-4511. PubMed ID: 27747339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenotypic drug profiling in droplet microfluidics for better targeting of drug-resistant tumors.
    Sarkar S; Cohen N; Sabhachandani P; Konry T
    Lab Chip; 2015 Dec; 15(23):4441-50. PubMed ID: 26456240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity.
    Zhao Y; Zhao XT; Chen DY; Luo YN; Jiang M; Wei C; Long R; Yue WT; Wang JB; Chen J
    Biosens Bioelectron; 2014 Jul; 57():245-53. PubMed ID: 24594591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Label-Free Quantification of Small-Molecule Binding to Membrane Proteins on Single Cells by Tracking Nanometer-Scale Cellular Membrane Deformation.
    Zhang F; Jing W; Hunt A; Yu H; Yang Y; Wang S; Chen HY; Tao N
    ACS Nano; 2018 Feb; 12(2):2056-2064. PubMed ID: 29397682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridging the gap: microfluidic devices for short and long distance cell-cell communication.
    Vu TQ; de Castro RM; Qin L
    Lab Chip; 2017 Mar; 17(6):1009-1023. PubMed ID: 28205652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-cell barcoding and sequencing using droplet microfluidics.
    Zilionis R; Nainys J; Veres A; Savova V; Zemmour D; Klein AM; Mazutis L
    Nat Protoc; 2017 Jan; 12(1):44-73. PubMed ID: 27929523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequencing of human genomes extracted from single cancer cells isolated in a valveless microfluidic device.
    Marie R; Pødenphant M; Koprowska K; Bærlocher L; Vulders RCM; Wilding J; Ashley N; McGowan SJ; van Strijp D; van Hemert F; Olesen T; Agersnap N; Bilenberg B; Sabatel C; Schira J; Kristensen A; Bodmer W; van der Zaag PJ; Mir KU
    Lab Chip; 2018 Jun; 18(13):1891-1902. PubMed ID: 29873383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.
    Xue P; Wu Y; Guo J; Kang Y
    Biomed Microdevices; 2015 Apr; 17(2):39. PubMed ID: 25749640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-nano Channel.
    Lin L; Mawatari K; Morikawa K; Kitamori T
    Anal Sci; 2016; 32(1):75-8. PubMed ID: 26753709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-cell assays using integrated continuous-flow microfluidics.
    Ng EX; Hsu MN; Sun G; Chen CH
    Methods Enzymol; 2019; 628():59-94. PubMed ID: 31668236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A scalable filtration method for high throughput screening based on cell deformability.
    Gill NK; Ly C; Nyberg KD; Lee L; Qi D; Tofig B; Reis-Sobreiro M; Dorigo O; Rao J; Wiedemeyer R; Karlan B; Lawrenson K; Freeman MR; Damoiseaux R; Rowat AC
    Lab Chip; 2019 Jan; 19(2):343-357. PubMed ID: 30566156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.