BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27785535)

  • 1. [Conversion of sound into auditory nerve action potentials].
    Encke J; Kreh J; Völk F; Hemmert W
    HNO; 2016 Nov; 64(11):808-814. PubMed ID: 27785535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning in to cochlear hair cells.
    Kros CJ; Evans MG
    J Physiol; 2006 Oct; 576(Pt 1):7-9. PubMed ID: 16916901
    [No Abstract]   [Full Text] [Related]  

  • 3. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two types of cochlear hair cells with two different modes of activation are better than one.
    Sohmer H
    J Basic Clin Physiol Pharmacol; 2012 Jan; 23(1):1-3. PubMed ID: 22865443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound-evoked radial strain in the hearing organ.
    Tomo I; Boutet de Monvel J; Fridberger A
    Biophys J; 2007 Nov; 93(9):3279-84. PubMed ID: 17604314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine transporter is essential for the maintenance of spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation.
    Ruel J; Wang J; Demêmes D; Gobaille S; Puel JL; Rebillard G
    J Neurochem; 2006 Apr; 97(1):190-200. PubMed ID: 16524378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational model of the primary auditory neuron activity.
    Michel C; Nouvian R; Azevedo-Coste C; Puel JL; Bourien J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():722-5. PubMed ID: 21095895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hair cell and neural contributions to the cochlear summating potential.
    Pappa AK; Hutson KA; Scott WC; Wilson JD; Fox KE; Masood MM; Giardina CK; Pulver SH; Grana GD; Askew C; Fitzpatrick DC
    J Neurophysiol; 2019 Jun; 121(6):2163-2180. PubMed ID: 30943095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling signal propagation in the human cochlea.
    Neely ST; Rasetshwane DM
    J Acoust Soc Am; 2017 Oct; 142(4):2155. PubMed ID: 29092611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss.
    Heinz MG; Young ED
    J Neurophysiol; 2004 Feb; 91(2):784-95. PubMed ID: 14534289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic resonance in the mechanoelectrical transduction of hair cells.
    Lindner JF; Bennett M; Wiesenfeld K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051911. PubMed ID: 16383649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass Potentials Recorded at the Round Window Enable the Detection of Low Spontaneous Rate Fibers in Gerbil Auditory Nerve.
    Batrel C; Huet A; Hasselmann F; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    PLoS One; 2017; 12(1):e0169890. PubMed ID: 28085968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological basis of hearing-aid design.
    Sachs MB; Bruce IC; Miller RL; Young ED
    Ann Biomed Eng; 2002 Feb; 30(2):157-68. PubMed ID: 11962768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session.
    Polak M; Eshraghi AA; Nehme O; Ahsan S; Guzman J; Delgado RE; He J; Telischi FF; Balkany TJ; Van De Water TR
    J Neurosci Methods; 2004 Apr; 134(2):141-9. PubMed ID: 15003380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous otoacoustic emissions in neonates and effect of contralateral white noise stimulation.
    Franz B; Altidis P; Altidis B
    Int Tinnitus J; 2000; 6(2):168-71. PubMed ID: 14689637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.
    Santarelli R; del Castillo I; Cama E; Scimemi P; Starr A
    Hear Res; 2015 Dec; 330(Pt B):200-12. PubMed ID: 26188103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.
    Xu Y; Collins LM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1040-9. PubMed ID: 15977734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal integration of sound pressure determines thresholds of auditory-nerve fibers.
    Heil P; Neubauer H
    J Neurosci; 2001 Sep; 21(18):7404-15. PubMed ID: 11549751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.