BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27785561)

  • 21. Classification accuracy of the wrist-worn gravity estimator of normal everyday activity accelerometer.
    Welch WA; Bassett DR; Thompson DL; Freedson PS; Staudenmayer JW; John D; Steeves JA; Conger SA; Ceaser T; Howe CA; Sasaki JE; Fitzhugh EC
    Med Sci Sports Exerc; 2013 Oct; 45(10):2012-9. PubMed ID: 23584403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of accelerometry to classify activity beneficial to bone in premenopausal women.
    Stiles VH; Griew PJ; Rowlands AV
    Med Sci Sports Exerc; 2013 Dec; 45(12):2353-61. PubMed ID: 23698245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validity of wrist worn accelerometers and comparability between hip and wrist placement sites in estimating physical activity behaviour in preschool children.
    Hislop J; Palmer N; Anand P; Aldin T
    Physiol Meas; 2016 Oct; 37(10):1701-1714. PubMed ID: 27653188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
    Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G
    Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calibration and validation of the ActiGraph GT3X+ in 2-3 year olds.
    Costa S; Barber SE; Cameron N; Clemes SA
    J Sci Med Sport; 2014 Nov; 17(6):617-22. PubMed ID: 24365695
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of intensity-based cut-points for the RT3 accelerometer in youth.
    Joschtel BJ; Trost SG
    J Sci Med Sport; 2014 Sep; 17(5):501-5. PubMed ID: 24262335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Moving Forward with Backward Compatibility: Translating Wrist Accelerometer Data.
    Rowlands AV; Cliff DP; Fairclough SJ; Boddy LM; Olds TS; Parfitt G; Noonan RJ; Downs SJ; Knowles ZR; Beets MW
    Med Sci Sports Exerc; 2016 Nov; 48(11):2142-2149. PubMed ID: 27327029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technical variability of the Vivago® wrist-worn accelerometer.
    Vanhelst J; Fardy PS; Beghin L
    J Sports Sci; 2014; 32(19):1768-74. PubMed ID: 24842592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishing and evaluating wrist cutpoints for the GENEActiv accelerometer in youth.
    Schaefer CA; Nigg CR; Hill JO; Brink LA; Browning RC
    Med Sci Sports Exerc; 2014 Apr; 46(4):826-33. PubMed ID: 24121241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of the Vivago Wrist-Worn accelerometer in the assessment of physical activity.
    Vanhelst J; Hurdiel R; Mikulovic J; Bui-Xuân G; Fardy P; Theunynck D; Béghin L
    BMC Public Health; 2012 Aug; 12():690. PubMed ID: 22913286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist.
    Rosenberger ME; Haskell WL; Albinali F; Mota S; Nawyn J; Intille S
    Med Sci Sports Exerc; 2013 May; 45(5):964-75. PubMed ID: 23247702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Actigraph accelerometer-defined boundaries for sedentary behaviour and physical activity intensities in 7 year old children.
    Pulsford RM; Cortina-Borja M; Rich C; Kinnafick FE; Dezateux C; Griffiths LJ
    PLoS One; 2011; 6(8):e21822. PubMed ID: 21853021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors.
    Hildebrand M; VAN Hees VT; Hansen BH; Ekelund U
    Med Sci Sports Exerc; 2014 Sep; 46(9):1816-24. PubMed ID: 24887173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ActiGraph GT3X+ cut-points for identifying sedentary behaviour in older adults in free-living environments.
    Aguilar-Farías N; Brown WJ; Peeters GM
    J Sci Med Sport; 2014 May; 17(3):293-9. PubMed ID: 23932934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calibration of ActiGraph GT3X, Actical and RT3 accelerometers in adolescents.
    Romanzini M; Petroski EL; Ohara D; Dourado AC; Reichert FF
    Eur J Sport Sci; 2014; 14(1):91-9. PubMed ID: 24533499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of cut-off points for the Move4 accelerometer in children aged 8-13 years.
    Beck F; Marzi I; Eisenreich A; Seemüller S; Tristram C; Reimers AK
    BMC Sports Sci Med Rehabil; 2023 Nov; 15(1):163. PubMed ID: 38017586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ability of RT3 accelerometer cut points to detect physical activity intensity in ambulatory children with cerebral palsy.
    Ryan J; Walsh M; Gormley J
    Adapt Phys Activ Q; 2014 Oct; 31(4):310-24. PubMed ID: 25211479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and validity of accelerometer cut-points for toddlers.
    Trost SG; Fees BS; Haar SJ; Murray AD; Crowe LK
    Obesity (Silver Spring); 2012 Nov; 20(11):2317-9. PubMed ID: 22173573
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Association of Recess Provision With Accelerometer-Measured Physical Activity and Sedentary Time in a Representative Sample of 6- to 11-Year-Old Children in the United States.
    Clevenger KA; McKee KL; McNarry MA; Mackintosh KA; Berrigan D
    Pediatr Exerc Sci; 2024 May; 36(2):83-90. PubMed ID: 37758264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Accelerometry Methods for Estimating Physical Activity.
    Kerr J; Marinac CR; Ellis K; Godbole S; Hipp A; Glanz K; Mitchell J; Laden F; James P; Berrigan D
    Med Sci Sports Exerc; 2017 Mar; 49(3):617-624. PubMed ID: 27755355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.