BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 27785611)

  • 1. The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
    Daszkiewicz K; Maquer G; Zysset PK
    Biomech Model Mechanobiol; 2017 Jun; 16(3):731-742. PubMed ID: 27785611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the effective yield properties of human trabecular bone using nonlinear micro-finite element analyses.
    Wili P; Maquer G; Panyasantisuk J; Zysset PK
    Biomech Model Mechanobiol; 2017 Dec; 16(6):1925-1936. PubMed ID: 28643141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of boundary conditions on yield properties of human femoral trabecular bone.
    Panyasantisuk J; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1043-53. PubMed ID: 26517986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of mixed and kinematic uniform boundary conditions in homogenized elasticity of femoral trabecular bone using microfinite element analyses.
    Panyasantisuk J; Pahr DH; Gross T; Zysset PK
    J Biomech Eng; 2015 Jan; 137(1):. PubMed ID: 25363247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of boundary conditions on computed apparent elastic properties of cancellous bone.
    Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2008 Dec; 7(6):463-76. PubMed ID: 17972122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors.
    Moreno R; Smedby Ö; Pahr DH
    Biomech Model Mechanobiol; 2016 Aug; 15(4):831-44. PubMed ID: 26341838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor.
    Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK
    J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology-elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations.
    Gross T; Pahr DH; Zysset PK
    Biomech Model Mechanobiol; 2013 Aug; 12(4):793-800. PubMed ID: 23053593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.
    Nazemi SM; Cooper DM; Johnston JD
    Med Eng Phys; 2016 Sep; 38(9):978-87. PubMed ID: 27372175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach to estimate trabecular bone anisotropy from stress tensors.
    Hazrati Marangalou J; Ito K; van Rietbergen B
    Biomech Model Mechanobiol; 2015 Jan; 14(1):39-48. PubMed ID: 24777672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach to estimate trabecular bone anisotropy using a database approach.
    Hazrati Marangalou J; Ito K; Cataldi M; Taddei F; van Rietbergen B
    J Biomech; 2013 Sep; 46(14):2356-62. PubMed ID: 23972430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of enhanced continuum FE with micro FE models of human vertebral bodies.
    Pahr DH; Zysset PK
    J Biomech; 2009 Mar; 42(4):455-62. PubMed ID: 19155014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabric-elasticity relationships of tibial trabecular bone are similar in osteogenesis imperfecta and healthy individuals.
    Simon M; Indermaur M; Schenk D; Hosseinitabatabaei S; Willie BM; Zysset P
    Bone; 2022 Feb; 155():116282. PubMed ID: 34896360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.
    Rieger R; Auregan JC; Hoc T
    Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.
    Nazemi SM; Kalajahi SMH; Cooper DML; Kontulainen SA; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    J Biomech; 2017 Jul; 59():101-108. PubMed ID: 28601243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures.
    Goda I; Ganghoffer JF
    J Mech Behav Biomed Mater; 2015 Nov; 51():99-118. PubMed ID: 26232945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations.
    Werner B; Ovesy M; Zysset PK
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3188. PubMed ID: 30786166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.
    Maquer G; Musy SN; Wandel J; Gross T; Zysset PK
    J Bone Miner Res; 2015 Jun; 30(6):1000-8. PubMed ID: 25529534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plausibility and parameter sensitivity of micro-finite element-based joint load prediction at the proximal femur.
    Synek A; Pahr DH
    Biomech Model Mechanobiol; 2018 Jun; 17(3):843-852. PubMed ID: 29289992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.