BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27786417)

  • 1. Indirect Solid Freeform Fabrication of an Initiator-Free Photocrosslinkable Hydrogel Precursor for the Creation of Porous Scaffolds.
    Houben A; Pien N; Lu X; Bisi F; Van Hoorick J; Boone MN; Roose P; Van den Bergen H; Bontinck D; Bowden T; Dubruel P; Van Vlierberghe S
    Macromol Biosci; 2016 Dec; 16(12):1883-1894. PubMed ID: 27786417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.
    Krishna L; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S115-22. PubMed ID: 18584124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds.
    Van Hoorick J; Declercq H; De Muynck A; Houben A; Van Hoorebeke L; Cornelissen R; Van Erps J; Thienpont H; Dubruel P; Van Vlierberghe S
    J Mater Sci Mater Med; 2015 Oct; 26(10):247. PubMed ID: 26411443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration.
    Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC
    Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.
    Jwo SC; Chiu CH; Tang SJ; Hsieh MF
    Biomed Mater; 2013 Dec; 8(6):065002. PubMed ID: 24225182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tough, precision-porous hydrogel scaffold: ophthalmologic applications.
    Teng W; Long TJ; Zhang Q; Yao K; Shen TT; Ratner BD
    Biomaterials; 2014 Oct; 35(32):8916-26. PubMed ID: 25085856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of an UV-Curable Divinyl-Fumarate Poly-ε-Caprolactone for Stereolithography Applications.
    Ronca A; Ronca S; Forte G; Ambrosio L
    Methods Mol Biol; 2021; 2147():55-62. PubMed ID: 32840810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds.
    Saito E; Suarez-Gonzalez D; Murphy WL; Hollister SJ
    Adv Healthc Mater; 2015 Mar; 4(4):621-32. PubMed ID: 25515846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens.
    Kim J; Yaszemski MJ; Lu L
    Tissue Eng Part C Methods; 2009 Dec; 15(4):583-94. PubMed ID: 19216632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering.
    Correia TR; Ferreira P; Vaz R; Alves P; Figueiredo MM; Correia IJ; Coimbra P
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1539-1548. PubMed ID: 27185071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds.
    Saito E; Liu Y; Migneco F; Hollister SJ
    Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells.
    Barnett HH; Heimbuck AM; Pursell I; Hegab RA; Sawyer BJ; Newman JJ; Caldorera-Moore ME
    J Biomater Sci Polym Ed; 2019 Aug; 30(11):895-918. PubMed ID: 31039085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration.
    Chandrasekaran AR; Venugopal J; Sundarrajan S; Ramakrishna S
    Biomed Mater; 2011 Feb; 6(1):015001. PubMed ID: 21205999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable 3D hydrogel scaffold with tailorable porosity post-implantation.
    Al-Abboodi A; Fu J; Doran PM; Tan TT; Chan PP
    Adv Healthc Mater; 2014 May; 3(5):725-36. PubMed ID: 24151286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams.
    Haryanto ; Singh D; Huh PH; Kim SC
    J Biomed Mater Res A; 2016 Jan; 104(1):48-56. PubMed ID: 26148840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.
    Henke M; Baumer J; Blunk T; Tessmar J
    J Tissue Eng Regen Med; 2014 Mar; 8(3):248-52. PubMed ID: 22718564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
    Ahn S; Lee S; Cho Y; Chun W; Kim G
    Bioprocess Biosyst Eng; 2011 Sep; 34(7):903-11. PubMed ID: 21472408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).
    Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE
    Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.