These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 27786437)

  • 21. Diffusion dynamics of small molecules from mesoporous silicon films by real-time optical interferometry.
    Mares JW; Weiss SM
    Appl Opt; 2011 Sep; 50(27):5329-37. PubMed ID: 21947054
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.
    Rodriguez GA; Ryckman JD; Jiao Y; Weiss SM
    Biosens Bioelectron; 2014 Mar; 53():486-93. PubMed ID: 24211462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Label-free optical detection of peptide synthesis on a porous silicon scaffold/sensor.
    Furbert P; Lu C; Winograd N; DeLouise L
    Langmuir; 2008 Mar; 24(6):2908-15. PubMed ID: 18247639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures.
    Cho B; Lee BY; Kim HC; Woo HG; Sohn H
    J Nanosci Nanotechnol; 2012 May; 12(5):4159-62. PubMed ID: 22852363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.
    Cho B; Kim S; Woo HG; Kim S; Sohn H
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1083-7. PubMed ID: 26353616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.
    Ko PJ; Ishikawa R; Sohn H; Sandhu A
    J Nanosci Nanotechnol; 2013 Apr; 13(4):2451-60. PubMed ID: 23763119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photolithographic strategy for patterning preformed, chemically modified, porous silicon photonic crystal using click chemistry.
    Zhu Y; Gupta B; Guan B; Ciampi S; Reece PJ; Gooding JJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6514-21. PubMed ID: 23781770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High throughput fabrication of plasmonic nanostructures in nanofluidic pores for biosensing applications.
    Mazzotta F; Höök F; Jonsson MP
    Nanotechnology; 2012 Oct; 23(41):415304. PubMed ID: 23018651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photonic crystal nanobeam biosensors based on porous silicon.
    Rodriguez GA; Markov P; Cartwright AP; Choudhury MH; Afzal FO; Cao T; Halimi SI; Retterer ST; Kravchenko II; Weiss SM
    Opt Express; 2019 Apr; 27(7):9536-9549. PubMed ID: 31045103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards a subcutaneous optical biosensor based on thermally hydrocarbonised porous silicon.
    Tong WY; Sweetman MJ; Marzouk ER; Fraser C; Kuchel T; Voelcker NH
    Biomaterials; 2016 Jan; 74():217-30. PubMed ID: 26466356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage.
    Reta N; Michelmore A; Saint C; Prieto-Simón B; Voelcker NH
    Biosens Bioelectron; 2016 Jun; 80():47-53. PubMed ID: 26803413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of self-supporting porous silicon membranes and tuning transport properties by surface functionalization.
    Velleman L; Shearer CJ; Ellis AV; Losic D; Voelcker NH; Shapter JG
    Nanoscale; 2010 Sep; 2(9):1756-61. PubMed ID: 20820706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical waveguide sensor based on silica nanotube arrays for label-free biosensing.
    Fan Y; Ding Y; Ma H; Teramae N; Sun S; He Y
    Biosens Bioelectron; 2015 May; 67():230-6. PubMed ID: 25175877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach for osteocalcin detection by competitive ELISA using porous silicon as a substrate.
    Rahimi F; Mohammadnejad Arough J; Yaghoobi M; Davoodi H; Sepehri F; Amirabadizadeh M
    Biotechnol Appl Biochem; 2017 Nov; 64(6):871-878. PubMed ID: 27775855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass Transfer Limitations of Porous Silicon-Based Biosensors for Protein Detection.
    Arshavsky Graham S; Boyko E; Salama R; Segal E
    ACS Sens; 2020 Oct; 5(10):3058-3069. PubMed ID: 32896130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor.
    Chhasatia R; Sweetman MJ; Harding FJ; Waibel M; Kay T; Thomas H; Loudovaris T; Voelcker NH
    Biosens Bioelectron; 2017 May; 91():515-522. PubMed ID: 28082240
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long duration stabilization of porous silicon membranes in physiological media: Application for implantable reactors.
    Baraket A; Alcaraz JP; Gondran C; Costa G; Nonglaton G; Gaillard F; Cinquin P; Cosnier ML; Martin DK
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110359. PubMed ID: 31923938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On Chip Protein Pre-Concentration for Enhancing the Sensitivity of Porous Silicon Biosensors.
    Arshavsky-Graham S; Massad-Ivanir N; Paratore F; Scheper T; Bercovici M; Segal E
    ACS Sens; 2017 Dec; 2(12):1767-1773. PubMed ID: 29164872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable detection sensitivity of opiates in urine via a label-free porous silicon competitive inhibition immunosensor.
    Bonanno LM; Delouise LA
    Anal Chem; 2010 Jan; 82(2):714-22. PubMed ID: 20028021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inverse design of a single-frequency diffractive biosensor based on the reporter cleavage detection mechanism.
    Chung H; Boriskina SV
    Opt Express; 2021 Mar; 29(7):10780-10799. PubMed ID: 33820205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.