These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27787239)

  • 1. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors.
    Sutter JP; Alcock SG; Kashyap Y; Nistea I; Wang H; Sawhney K
    J Synchrotron Radiat; 2016 Nov; 23(Pt 6):1333-1347. PubMed ID: 27787239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface profiling of X-ray mirrors for shaping focused beams.
    Laundy D; Alianelli L; Sutter J; Evans G; Sawhney K
    Opt Express; 2015 Jan; 23(2):1576-84. PubMed ID: 25835915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.
    Alcock SG; Nistea I; Sutter JP; Sawhney K; Fermé JJ; Thellièr C; Peverini L
    J Synchrotron Radiat; 2015 Jan; 22(1):10-5. PubMed ID: 25537582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams.
    Alcock SG; Nistea IT; Signorato R; Owen RL; Axford D; Sutter JP; Foster A; Sawhney K
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):45-51. PubMed ID: 30655467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.
    Kashyap Y; Wang H; Sawhney K
    Rev Sci Instrum; 2016 May; 87(5):052001. PubMed ID: 27250381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors.
    Alcock SG; Nistea IT; Signorato R; Sawhney K
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):36-44. PubMed ID: 30655466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.
    Spiga D
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):123-130. PubMed ID: 29271761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed adaptive optics using bimorph deformable x-ray mirrors.
    Alcock SG; Nistea IT; Badami VG; Signorato R; Sawhney K
    Rev Sci Instrum; 2019 Feb; 90(2):021712. PubMed ID: 30831713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profile measurement of concave spherical mirror and a flat mirror using a high-speed nanoprofiler.
    Usuki K; Kitayama T; Matsumura H; Kojima T; Uchikoshi J; Higashi Y; Endo K
    Nanoscale Res Lett; 2013 May; 8(1):231. PubMed ID: 23680514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique.
    Wang H; Kashyap Y; Laundy D; Sawhney K
    J Synchrotron Radiat; 2015 Jul; 22(4):925-9. PubMed ID: 26134795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven modeling and control of an X-ray bimorph adaptive mirror.
    Gunjala G; Wojdyla A; Goldberg KA; Qiao Z; Shi X; Assoufid L; Waller L
    J Synchrotron Radiat; 2023 Jan; 30(Pt 1):57-64. PubMed ID: 36601926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stitching interferometry for ellipsoidal x-ray mirrors.
    Yumoto H; Koyama T; Matsuyama S; Yamauchi K; Ohashi H
    Rev Sci Instrum; 2016 May; 87(5):051905. PubMed ID: 27250377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray beam quality after a mirror reflection: Experimental and simulated results for a toroidal mirror in a 4
    Reyes-Herrera J; Celestre R; Cammarata M; Barrett R; Levantino M; Sanchez Del Rio M
    Open Res Eur; 2023; 3():173. PubMed ID: 37990739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An active piezoelectric plane X-ray focusing mirror with a linearly changing thickness.
    Tian N; Jiang H; Xie J; Yan S; Liang D; Jiang Z
    J Synchrotron Radiat; 2024 Jan; 31(Pt 1):10-16. PubMed ID: 38010795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a multi-lane X-ray mirror providing variable beam sizes.
    Laundy D; Sawhney K; Nistea I; Alcock SG; Pape I; Sutter J; Alianelli L; Evans G
    Rev Sci Instrum; 2016 May; 87(5):051802. PubMed ID: 27250369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.
    Goto T; Nakamori H; Kimura T; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K; Matsuyama S
    Rev Sci Instrum; 2015 Apr; 86(4):043102. PubMed ID: 25933836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stitching techniques for measuring X-ray synchrotron mirror topography.
    Vivo A; Barrett R; Perrin F
    Rev Sci Instrum; 2019 Feb; 90(2):021710. PubMed ID: 30831702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast optimization of a bimorph mirror using x-ray grating interferometry.
    Wang H; Sawhney K; Berujon S; Sutter J; Alcock SG; Wagner U; Rau C
    Opt Lett; 2014 Apr; 39(8):2518-21. PubMed ID: 24979033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced in situ metrology for x-ray beam shaping with super precision.
    Wang H; Sutter J; Sawhney K
    Opt Express; 2015 Jan; 23(2):1605-14. PubMed ID: 25835918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a glue-free bimorph mirror for use in vacuum chambers.
    Ichii Y; Okada H; Nakamori H; Ueda A; Yamaguchi H; Matsuyama S; Yamauchi K
    Rev Sci Instrum; 2019 Feb; 90(2):021702. PubMed ID: 30831767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.