These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27787240)

  • 1. Controlling X-ray deformable mirrors during inspection.
    Huang L; Xue J; Idir M
    J Synchrotron Radiat; 2016 Nov; 23(Pt 6):1348-1356. PubMed ID: 27787240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams.
    Alcock SG; Nistea IT; Signorato R; Owen RL; Axford D; Sutter JP; Foster A; Sawhney K
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):45-51. PubMed ID: 30655467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized alignment of X-ray mirrors with an automated speckle-based metrology tool.
    Zhou T; Wang H; Fox OJL; Sawhney KJS
    Rev Sci Instrum; 2019 Feb; 90(2):021706. PubMed ID: 30831677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stitching interferometry for ellipsoidal x-ray mirrors.
    Yumoto H; Koyama T; Matsuyama S; Yamauchi K; Ohashi H
    Rev Sci Instrum; 2016 May; 87(5):051905. PubMed ID: 27250377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.
    Goto T; Nakamori H; Kimura T; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K; Matsuyama S
    Rev Sci Instrum; 2015 Apr; 86(4):043102. PubMed ID: 25933836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.
    Spiga D
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):123-130. PubMed ID: 29271761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-nanometer flattening of 45 cm long, 45 actuator x-ray deformable mirror.
    Poyneer LA; McCarville T; Pardini T; Palmer D; Brooks A; Pivovaroff MJ; Macintosh B
    Appl Opt; 2014 Jun; 53(16):3404-14. PubMed ID: 24922415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray metrology and performance of a 45-cm long x-ray deformable mirror.
    Poyneer LA; Brejnholt NF; Hill R; Jackson J; Hagler L; Celestre R; Feng J
    Rev Sci Instrum; 2016 May; 87(5):052003. PubMed ID: 27250383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors.
    Alcock SG; Nistea IT; Signorato R; Sawhney K
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):36-44. PubMed ID: 30655466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors.
    Sutter JP; Alcock SG; Kashyap Y; Nistea I; Wang H; Sawhney K
    J Synchrotron Radiat; 2016 Nov; 23(Pt 6):1333-1347. PubMed ID: 27787239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven modeling and control of an X-ray bimorph adaptive mirror.
    Gunjala G; Wojdyla A; Goldberg KA; Qiao Z; Shi X; Assoufid L; Waller L
    J Synchrotron Radiat; 2023 Jan; 30(Pt 1):57-64. PubMed ID: 36601926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time machine-learning-driven control system of a deformable mirror for achieving aberration-free X-ray wavefronts.
    Rebuffi L; Shi X; Qiao Z; Highland MJ; Frith MG; Wojdyla A; Goldberg KA; Assoufid L
    Opt Express; 2023 Jun; 31(13):21264-21279. PubMed ID: 37381230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A piezoelectric deformable X-ray mirror for phase compensation based on global optimization.
    Jiang H; Tian N; Liang D; Du G; Yan S
    J Synchrotron Radiat; 2019 May; 26(Pt 3):729-736. PubMed ID: 31074437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.
    Kashyap Y; Wang H; Sawhney K
    Rev Sci Instrum; 2016 May; 87(5):052001. PubMed ID: 27250381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and simulation study of undesirable short-period deformation in piezoelectric deformable x-ray mirrors.
    Nakamori H; Matsuyama S; Imai S; Kimura T; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K
    Rev Sci Instrum; 2012 May; 83(5):053701. PubMed ID: 22667619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique.
    Wang H; Kashyap Y; Laundy D; Sawhney K
    J Synchrotron Radiat; 2015 Jul; 22(4):925-9. PubMed ID: 26134795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a multi-lane X-ray mirror providing variable beam sizes.
    Laundy D; Sawhney K; Nistea I; Alcock SG; Pape I; Sutter J; Alianelli L; Evans G
    Rev Sci Instrum; 2016 May; 87(5):051802. PubMed ID: 27250369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.
    Alcock SG; Nistea I; Sutter JP; Sawhney K; Fermé JJ; Thellièr C; Peverini L
    J Synchrotron Radiat; 2015 Jan; 22(1):10-5. PubMed ID: 25537582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of deformable mirrors for ocular adaptive optics.
    Dalimier E; Dainty C
    Opt Express; 2005 May; 13(11):4275-85. PubMed ID: 19495342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stitching techniques for measuring X-ray synchrotron mirror topography.
    Vivo A; Barrett R; Perrin F
    Rev Sci Instrum; 2019 Feb; 90(2):021710. PubMed ID: 30831702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.