These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 27787531)

  • 1. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.
    Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data.
    Song C; Sakata O; Kumara LS; Kohara S; Yang A; Kusada K; Kobayashi H; Kitagawa H
    Sci Rep; 2016 Aug; 6():31400. PubMed ID: 27506187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.
    Prasai B; Ren Y; Shan S; Zhao Y; Cronk H; Luo J; Zhong CJ; Petkov V
    Nanoscale; 2015 May; 7(17):8122-34. PubMed ID: 25874741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse Monte Carlo modeling for local structures of noble metal nanoparticles using high-energy XRD and EXAFS.
    Harada M; Ikegami R; Kumara LSR; Kohara S; Sakata O
    RSC Adv; 2019 Sep; 9(51):29511-29521. PubMed ID: 35531547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvents-dependent selective fabrication of face-centered cubic and hexagonal close-packed structured ruthenium nanoparticles during liquid-phase laser ablation.
    Pang B; Ma Y; Tian Z; Liu J; Wu S; Teng D; Li P; Liang C
    J Colloid Interface Sci; 2021 Mar; 585():452-458. PubMed ID: 33268061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ru Octahedral Nanocrystals with a Face-Centered Cubic Structure, {111} Facets, Thermal Stability up to 400 °C, and Enhanced Catalytic Activity.
    Zhao M; Chen Z; Lyu Z; Hood ZD; Xie M; Vara M; Chi M; Xia Y
    J Am Chem Soc; 2019 May; 141(17):7028-7036. PubMed ID: 30973711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium Nanoframes in the Face-Centered Cubic Phase: Facile Synthesis and Their Enhanced Catalytic Performance.
    Zhao M; Hood ZD; Vara M; Gilroy KD; Chi M; Xia Y
    ACS Nano; 2019 Jun; 13(6):7241-7251. PubMed ID: 31145858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method.
    Kusada K; Kobayashi H; Yamamoto T; Matsumura S; Sumi N; Sato K; Nagaoka K; Kubota Y; Kitagawa H
    J Am Chem Soc; 2013 Apr; 135(15):5493-6. PubMed ID: 23557199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Characterization of Ru Cubic Nanocages with a Face-Centered Cubic Structure by Templating with Pd Nanocubes.
    Zhao M; Figueroa-Cosme L; Elnabawy AO; Vara M; Yang X; Roling LT; Chi M; Mavrikakis M; Xia Y
    Nano Lett; 2016 Aug; 16(8):5310-7. PubMed ID: 27458871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Catalysts for Fischer-Tropsch Synthesis.
    Li WZ; Liu JX; Gu J; Zhou W; Yao SY; Si R; Guo Y; Su HY; Yan CH; Li WX; Zhang YW; Ma D
    J Am Chem Soc; 2017 Feb; 139(6):2267-2276. PubMed ID: 28099028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell.
    Huang J; Liu Z; He C; Gan LM
    J Phys Chem B; 2005 Sep; 109(35):16644-9. PubMed ID: 16853117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Atomic Arrangement at Functional Interfaces Inside Nanoparticles by Resonant High-Energy X-ray Diffraction.
    Petkov V; Prasai B; Shastri S; Chen TY
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):23265-77. PubMed ID: 26415142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-controlled dissolution of organic-coated silver nanoparticles.
    Ma R; Levard C; Marinakos SM; Cheng Y; Liu J; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jan; 46(2):752-9. PubMed ID: 22142034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating fcc and hcp Ruthenium on the Surface of Palladium-Copper Alloy through Tunable Lattice Mismatch.
    Yao Y; He DS; Lin Y; Feng X; Wang X; Yin P; Hong X; Zhou G; Wu Y; Li Y
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5501-5. PubMed ID: 27010243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Structure Control of Binary and Ternary Solid-Solution Alloy Nanoparticles with a Face-Centered Cubic or Hexagonal Close-Packed Phase.
    Zhang Q; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Kawaguchi S; Kubota Y; Kitagawa H
    J Am Chem Soc; 2022 Mar; 144(9):4224-4232. PubMed ID: 35196005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-structural synergy for catalytic CO oxidation over palladium-nickel nanoalloys.
    Shan S; Petkov V; Yang L; Luo J; Joseph P; Mayzel D; Prasai B; Wang L; Engelhard M; Zhong CJ
    J Am Chem Soc; 2014 May; 136(19):7140-51. PubMed ID: 24794852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Engineering of a Ruthenium Nanostructure toward High-Performance Bifunctional Hydrogen Catalysis.
    Li L; Liu C; Liu S; Wang J; Han J; Chan TS; Li Y; Hu Z; Shao Q; Zhang Q; Huang X
    ACS Nano; 2022 Sep; 16(9):14885-14894. PubMed ID: 35998344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Control of Solid-Solution Nanoparticles beyond the Phase Diagram for Enhanced Catalytic Properties.
    Wu D; Kusada K; Aspera SM; Nakanishi H; Chen Y; Seo O; Song C; Kim J; Hiroi S; Sakata O; Yamamoto T; Matsumura S; Nanba Y; Koyama M; Ogiwara N; Kawaguchi S; Kubota Y; Kitagawa H
    ACS Mater Au; 2022 Mar; 2(2):110-116. PubMed ID: 36855761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse Monte Carlo study of spherical sample under non-periodic boundary conditions: the structure of Ru nanoparticles based on x-ray diffraction data.
    Gereben O; Petkov V
    J Phys Condens Matter; 2013 Nov; 25(45):454211. PubMed ID: 24141235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.