BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27787562)

  • 21. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy.
    Mishra M; Zhong Q; Kowluru RA
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(11):7256-65. PubMed ID: 25301875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired transport of mitochondrial transcription factor A (TFAM) and the metabolic memory phenomenon associated with the progression of diabetic retinopathy.
    Santos JM; Kowluru RA
    Diabetes Metab Res Rev; 2013 Mar; 29(3):204-13. PubMed ID: 23255365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A compensatory mechanism protects retinal mitochondria from initial insult in diabetic retinopathy.
    Santos JM; Tewari S; Kowluru RA
    Free Radic Biol Med; 2012 Nov; 53(9):1729-37. PubMed ID: 22982046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression.
    Mishra M; Zhong Q; Kowluru RA
    Free Radic Biol Med; 2014 Oct; 75():129-39. PubMed ID: 25016074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peripheral Blood Mitochondrial DNA Damage as a Potential Noninvasive Biomarker of Diabetic Retinopathy.
    Mishra M; Lillvis J; Seyoum B; Kowluru RA
    Invest Ophthalmol Vis Sci; 2016 Aug; 57(10):4035-44. PubMed ID: 27494345
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Damaged mitochondrial DNA replication system and the development of diabetic retinopathy.
    Tewari S; Santos JM; Kowluru RA
    Antioxid Redox Signal; 2012 Aug; 17(3):492-504. PubMed ID: 22229649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage.
    Kowluru RA; Mohammad G; dos Santos JM; Zhong Q
    Diabetes; 2011 Nov; 60(11):3023-33. PubMed ID: 21933988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory.
    Chan PS; Kanwar M; Kowluru RA
    J Diabetes Complications; 2010; 24(1):55-63. PubMed ID: 19056300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy.
    Duraisamy AJ; Mishra M; Kowluru A; Kowluru RA
    Invest Ophthalmol Vis Sci; 2018 Oct; 59(12):4831-4840. PubMed ID: 30347077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial Quality Control and Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy.
    Kowluru RA; Alka K
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of Rac1 transcription by histone and DNA methylation in diabetic retinopathy.
    Kowluru RA; Radhakrishnan R; Mohammad G
    Sci Rep; 2021 Jul; 11(1):14097. PubMed ID: 34238980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway.
    He Y; Dan Y; Gao X; Huang L; Lv H; Chen J
    Am J Physiol Endocrinol Metab; 2021 Mar; 320(3):E598-E608. PubMed ID: 33284093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy.
    Masser DR; Otalora L; Clark NW; Kinter MT; Elliott MH; Freeman WM
    J Neurochem; 2017 Dec; 143(5):595-608. PubMed ID: 28902411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats.
    Kowluru RA
    Diabetes; 2003 Mar; 52(3):818-23. PubMed ID: 12606525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of matrix metalloproteinase-9 in the development of diabetic retinopathy and its regulation by H-Ras.
    Kowluru RA
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):4320-6. PubMed ID: 20220057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diabetic retinopathy, metabolic memory and epigenetic modifications.
    Kowluru RA
    Vision Res; 2017 Oct; 139():30-38. PubMed ID: 28700951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stress and the development of diabetic retinopathy: contributory role of matrix metalloproteinase-2.
    Kowluru RA; Kanwar M
    Free Radic Biol Med; 2009 Jun; 46(12):1677-85. PubMed ID: 19345729
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondrial biogenesis and the development of diabetic retinopathy.
    Santos JM; Tewari S; Goldberg AF; Kowluru RA
    Free Radic Biol Med; 2011 Nov; 51(10):1849-60. PubMed ID: 21911054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNMT1-Mediated DNA Methylation Targets CDKN2B to Promote the Repair of Retinal Ganglion Cells in Streptozotocin-Induced Mongolian Gerbils during Diabetic Retinopathy.
    Wang X; Zhang J; Liao Y; Jin Y; Yu X; Li H; Yang Q; Li X; Chen R; Wu D; Zhu H
    Comput Math Methods Med; 2022; 2022():9212116. PubMed ID: 35295199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation.
    Liu Y; Biarnés Costa M; Gerhardinger C
    PLoS One; 2012; 7(5):e36949. PubMed ID: 22615852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.