These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 27787762)

  • 1. Tagging of individual embryos with electronic p-Chips.
    Mandecki W; Rodriguez EF; Drawbridge J
    Biomed Microdevices; 2016 Dec; 18(6):100. PubMed ID: 27787762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal exposure to Cd(II) causes malformations of Xenopus laevis embryos.
    Kotyzova D; Sundeman FW
    Ann Clin Lab Sci; 1998; 28(4):224-35. PubMed ID: 9715349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2,4-D butoxyethyl ester kinetics in embryos of Xenopus laevis: the role of the embryonic jelly coat in reducing chemical absorption.
    Edginton AN; Rouleau C; Stephenson GR; Boermans HJ
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):113-20. PubMed ID: 17031753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epithelial cell polarity in early Xenopus development.
    Müller HA; Hausen P
    Dev Dyn; 1995 Apr; 202(4):405-20. PubMed ID: 7626797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-mount immunohistochemistry on Xenopus embryos using far-red fluorescent dyes.
    Beumer TL; Veenstra GJ; Hage WJ; Destrée OH
    Trends Genet; 1995 Jan; 11(1):9. PubMed ID: 7900197
    [No Abstract]   [Full Text] [Related]  

  • 6. [Artificially applied tensions normalize development of relaxed Xenopus Laevis embryos].
    Belousov LV; Ermakov AS
    Ontogenez; 2001; 32(4):288-94. PubMed ID: 11573426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibronectin, mesoderm migration, and gastrulation in Xenopus.
    Winklbauer R; Keller RE
    Dev Biol; 1996 Aug; 177(2):413-26. PubMed ID: 8806820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrospectroscopic monitoring of early embryogenesis in single frog embryos.
    Asami K; Irimajiri A
    Phys Med Biol; 2000 Nov; 45(11):3285-97. PubMed ID: 11098904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards.
    Lee SC; Mietchen D; Cho JH; Kim YS; Kim C; Hong KS; Lee C; Kang D; Lee W; Cheong C
    Differentiation; 2007 Jan; 75(1):84-92. PubMed ID: 17244024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of nuclear beta-catenin in Xenopus embryos.
    Fagotto F; Brown CM
    Methods Mol Biol; 2008; 469():363-80. PubMed ID: 19109720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of activated MAP kinase in Xenopus laevis embryos: evaluating the roles of FGF and other signaling pathways in early induction and patterning.
    Curran KL; Grainger RM
    Dev Biol; 2000 Dec; 228(1):41-56. PubMed ID: 11087625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conditions for fibronectin fibril formation in the early Xenopus embryo.
    Winklbauer R
    Dev Dyn; 1998 Jul; 212(3):335-45. PubMed ID: 9671937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Morphogenetic and differentiation sequelae to relaxation of mechanical tensions in Xenopus laevis blastula].
    Ermakov AS; Belousov LV
    Ontogenez; 1998; 29(6):450-8. PubMed ID: 9885001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Lim1 expression in embryos of frogs with different modes of reproduction.
    Venegas-Ferrín M; Sudou N; Taira M; del Pino EM
    Int J Dev Biol; 2010; 54(1):195-202. PubMed ID: 19876816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy of living and fixed Xenopus laevis embryos.
    Efremov YM; Pukhlyakova EA; Bagrov DV; Shaitan KV
    Micron; 2011 Dec; 42(8):840-52. PubMed ID: 21724405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.
    Holt BD; Shawky JH; Dahl KN; Davidson LA; Islam MF
    J Appl Toxicol; 2016 Apr; 36(4):579-85. PubMed ID: 26153061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fish'n ChIPs: chromatin immunoprecipitation in the zebrafish embryo.
    Lindeman LC; Vogt-Kielland LT; Aleström P; Collas P
    Methods Mol Biol; 2009; 567():75-86. PubMed ID: 19588086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyaluronan is an abundant constituent of the extracellular matrix of Xenopus embryos.
    Müllegger J; Lepperdinger G
    Mol Reprod Dev; 2002 Mar; 61(3):312-6. PubMed ID: 11835576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium uptake and bioaccumulation in Xenopus laevis embryos at different developmental stages.
    Herkovits J; Cardellini P; Pavanati C; Pérez-Coll CS
    Ecotoxicol Environ Saf; 1998 Jan; 39(1):21-6. PubMed ID: 9515071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotation in Xenopus laevis embryos during the second cell cycle.
    Starodubov SM; Golychenkov VA
    Int J Dev Biol; 2009; 53(1):135-7. PubMed ID: 19123135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.