These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 27787821)

  • 21. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
    Spencer M; Eickholt J; Jianlin Cheng
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(1):103-12. PubMed ID: 25750595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting DNA-binding protein and coronavirus protein flexibility using protein dihedral angle and sequence feature.
    Wang W; Su X; Liu D; Zhang H; Wang X; Zhou Y
    Proteins; 2023 Apr; 91(4):497-507. PubMed ID: 36321218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Support vector machines for prediction of dihedral angle regions.
    Zimmermann O; Hansmann UH
    Bioinformatics; 2006 Dec; 22(24):3009-15. PubMed ID: 17005536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.
    Faraggi E; Xue B; Zhou Y
    Proteins; 2009 Mar; 74(4):847-56. PubMed ID: 18704931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Secondary structure specific simpler prediction models for protein backbone angles.
    Newton MAH; Mataeimoghadam F; Zaman R; Sattar A
    BMC Bioinformatics; 2022 Jan; 23(1):6. PubMed ID: 34983370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.
    Heffernan R; Yang Y; Paliwal K; Zhou Y
    Bioinformatics; 2017 Sep; 33(18):2842-2849. PubMed ID: 28430949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure.
    Cheung MS; Maguire ML; Stevens TJ; Broadhurst RW
    J Magn Reson; 2010 Feb; 202(2):223-33. PubMed ID: 20015671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties.
    Dor O; Zhou Y
    Proteins; 2007 Jul; 68(1):76-81. PubMed ID: 17397056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PSSM-based prediction of DNA binding sites in proteins.
    Ahmad S; Sarai A
    BMC Bioinformatics; 2005 Feb; 6():33. PubMed ID: 15720719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X.
    Faraggi E; Kloczkowski A
    Methods Mol Biol; 2017; 1484():45-53. PubMed ID: 27787819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. OPUS-TASS: a protein backbone torsion angles and secondary structure predictor based on ensemble neural networks.
    Xu G; Wang Q; Ma J
    Bioinformatics; 2020 Dec; 36(20):5021-5026. PubMed ID: 32678893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of turn types in protein structure by machine-learning classifiers.
    Meissner M; Koch O; Klebe G; Schneider G
    Proteins; 2009 Feb; 74(2):344-52. PubMed ID: 18618702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local backbone structure prediction of proteins.
    de Brevern AG; Benros C; Gautier R; Valadié H; Hazout S; Etchebest C
    In Silico Biol; 2004; 4(3):381-6. PubMed ID: 15724288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences.
    Song J; Tan H; Wang M; Webb GI; Akutsu T
    PLoS One; 2012; 7(2):e30361. PubMed ID: 22319565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
    Rost B; Sander C
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7558-62. PubMed ID: 8356056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The GOR Method of Protein Secondary Structure Prediction and Its Application as a Protein Aggregation Prediction Tool.
    Kouza M; Faraggi E; Kolinski A; Kloczkowski A
    Methods Mol Biol; 2017; 1484():7-24. PubMed ID: 27787816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences.
    Ruan J; Wang K; Yang J; Kurgan LA; Cios K
    Artif Intell Med; 2005; 35(1-2):19-35. PubMed ID: 16081261
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.