These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27787833)

  • 1. Predicting Post-Translational Modifications from Local Sequence Fragments Using Machine Learning Algorithms: Overview and Best Practices.
    Tatjewski M; Kierczak M; Plewczynski D
    Methods Mol Biol; 2017; 1484():275-300. PubMed ID: 27787833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Review on Posttranslational Modification in Proteins: Feature Construction, Algorithm and Webserver.
    Xu Y; Yang Y; Wang Z; Li C; Shao Y
    Protein Pept Lett; 2018; 25(9):807-814. PubMed ID: 30255739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature selection and the class imbalance problem in predicting protein function from sequence.
    Al-Shahib A; Breitling R; Gilbert D
    Appl Bioinformatics; 2005; 4(3):195-203. PubMed ID: 16231961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational refinement of post-translational modifications predicted from tandem mass spectrometry.
    Chung C; Liu J; Emili A; Frey BJ
    Bioinformatics; 2011 Mar; 27(6):797-806. PubMed ID: 21258065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive review of the imbalance classification of protein post-translational modifications.
    Dou L; Yang F; Xu L; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutli-Features Prediction of Protein Translational Modification Sites.
    Bao W; Yuan CA; Zhang Y; Han K; Nandi AK; Honig B; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1453-1460. PubMed ID: 28961121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting phosphorylation site prediction with sequence feature-based machine learning.
    Maiti S; Hassan A; Mitra P
    Proteins; 2020 Feb; 88(2):284-291. PubMed ID: 31412138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Machine Learning and Algorithmic Methods for Protein Phosphorylation Site Prediction.
    Esmaili F; Pourmirzaei M; Ramazi S; Shojaeilangari S; Yavari E
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1266-1285. PubMed ID: 37863385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AMS 4.0: consensus prediction of post-translational modifications in protein sequences.
    Plewczynski D; Basu S; Saha I
    Amino Acids; 2012 Aug; 43(2):573-82. PubMed ID: 22555647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AutoMotif server: prediction of single residue post-translational modifications in proteins.
    Plewczynski D; Tkacz A; Wyrwicz LS; Rychlewski L
    Bioinformatics; 2005 May; 21(10):2525-7. PubMed ID: 15728119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Prediction of Myristoylation Sites Using the mRMR Method, the IFS Method and an Extreme Learning Machine Algorithm.
    Wang S; Zhang YH; Huang G; Chen L; Cai YD
    Comb Chem High Throughput Screen; 2017; 20(2):96-106. PubMed ID: 28000567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EPuL: An Enhanced Positive-Unlabeled Learning Algorithm for the Prediction of Pupylation Sites.
    Nan X; Bao L; Zhao X; Zhao X; Sangaiah AK; Wang GG; Ma Z
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28872627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FEPS: A Tool for Feature Extraction from Protein Sequence.
    Ismail H; White C; Al-Barakati H; Newman RH; Kc DB
    Methods Mol Biol; 2022; 2499():65-104. PubMed ID: 35696075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.