These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 27787833)
21. Software eyes for protein post-translational modifications. Na S; Paek E Mass Spectrom Rev; 2015; 34(2):133-47. PubMed ID: 24889695 [TBL] [Abstract][Full Text] [Related]
22. PrAS: Prediction of amidation sites using multiple feature extraction. Wang T; Zheng W; Wuyun Q; Wu Z; Ruan J; Hu G; Gao J Comput Biol Chem; 2017 Feb; 66():57-62. PubMed ID: 27918921 [TBL] [Abstract][Full Text] [Related]
23. Predicting protein phosphorylation sites in soybean using interpretable deep tabular learning network. Khalili E; Ramazi S; Ghanati F; Kouchaki S Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152280 [TBL] [Abstract][Full Text] [Related]
24. Prediction of Protein-Protein Interaction Sites with Machine-Learning-Based Data-Cleaning and Post-Filtering Procedures. Liu GH; Shen HB; Yu DJ J Membr Biol; 2016 Apr; 249(1-2):141-53. PubMed ID: 26563228 [TBL] [Abstract][Full Text] [Related]
25. RBRIdent: An algorithm for improved identification of RNA-binding residues in proteins from primary sequences. Xiong D; Zeng J; Gong H Proteins; 2015 Jun; 83(6):1068-77. PubMed ID: 25846271 [TBL] [Abstract][Full Text] [Related]
26. DeepPPSite: A deep learning-based model for analysis and prediction of phosphorylation sites using efficient sequence information. Ahmed S; Kabir M; Arif M; Khan ZU; Yu DJ Anal Biochem; 2021 Jan; 612():113955. PubMed ID: 32949607 [TBL] [Abstract][Full Text] [Related]
27. Computational and statistical methods for high-throughput analysis of post-translational modifications of proteins. Schwämmle V; Verano-Braga T; Roepstorff P J Proteomics; 2015 Nov; 129():3-15. PubMed ID: 26216596 [TBL] [Abstract][Full Text] [Related]
28. A machine learning strategy for predicting localization of post-translational modification sites in protein-protein interacting regions. Saethang T; Payne DM; Avihingsanon Y; Pisitkun T BMC Bioinformatics; 2016 Aug; 17(1):307. PubMed ID: 27534850 [TBL] [Abstract][Full Text] [Related]
29. Structure-based prediction of post-translational modification cross-talk within proteins using complementary residue- and residue pair-based features. Liu HF; Liu R Brief Bioinform; 2020 Mar; 21(2):609-620. PubMed ID: 30649184 [TBL] [Abstract][Full Text] [Related]
30. QUATgo: Protein quaternary structural attributes predicted by two-stage machine learning approaches with heterogeneous feature encoding. Tung CH; Chien CH; Chen CW; Huang LY; Liu YN; Chu YW PLoS One; 2020; 15(4):e0232087. PubMed ID: 32348325 [TBL] [Abstract][Full Text] [Related]
31. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983 [TBL] [Abstract][Full Text] [Related]
32. Ens-PPI: A Novel Ensemble Classifier for Predicting the Interactions of Proteins Using Autocovariance Transformation from PSSM. Gao ZG; Wang L; Xia SX; You ZH; Yan X; Zhou Y Biomed Res Int; 2016; 2016():4563524. PubMed ID: 27437399 [TBL] [Abstract][Full Text] [Related]
33. Identification of post-translational modifications by blind search of mass spectra. Tsur D; Tanner S; Zandi E; Bafna V; Pevzner PA Nat Biotechnol; 2005 Dec; 23(12):1562-7. PubMed ID: 16311586 [TBL] [Abstract][Full Text] [Related]
34. Structural Analysis of PTM Hotspots (SAPH-ire)--A Quantitative Informatics Method Enabling the Discovery of Novel Regulatory Elements in Protein Families. Dewhurst HM; Choudhury S; Torres MP Mol Cell Proteomics; 2015 Aug; 14(8):2285-97. PubMed ID: 26070665 [TBL] [Abstract][Full Text] [Related]
35. StackSSSPred: A Stacking-Based Prediction of Supersecondary Structure from Sequence. Flot M; Mishra A; Kuchi AS; Hoque MT Methods Mol Biol; 2019; 1958():101-122. PubMed ID: 30945215 [TBL] [Abstract][Full Text] [Related]
36. Optimization of serine phosphorylation prediction in proteins by comparing human engineered features and deep representations. Naseer S; Hussain W; Khan YD; Rasool N Anal Biochem; 2021 Feb; 615():114069. PubMed ID: 33340540 [TBL] [Abstract][Full Text] [Related]
37. Global Post-Translational Modification Discovery. Li Q; Shortreed MR; Wenger CD; Frey BL; Schaffer LV; Scalf M; Smith LM J Proteome Res; 2017 Apr; 16(4):1383-1390. PubMed ID: 28248113 [TBL] [Abstract][Full Text] [Related]
38. PredNTS: Improved and Robust Prediction of Nitrotyrosine Sites by Integrating Multiple Sequence Features. Nilamyani AN; Auliah FN; Moni MA; Shoombuatong W; Hasan MM; Kurata H Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800121 [TBL] [Abstract][Full Text] [Related]
39. MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization. Wang D; Liu D; Yuchi J; He F; Jiang Y; Cai S; Li J; Xu D Nucleic Acids Res; 2020 Jul; 48(W1):W140-W146. PubMed ID: 32324217 [TBL] [Abstract][Full Text] [Related]
40. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Liu B Brief Bioinform; 2019 Jul; 20(4):1280-1294. PubMed ID: 29272359 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]