BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 27787879)

  • 1. Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo.
    Kim JY; Lee EJ; Seo J; Oh SH
    Br J Dermatol; 2017 Jun; 176(6):1558-1568. PubMed ID: 27787879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo.
    Cui T; Zhang W; Li S; Chen X; Chang Y; Yi X; Kang P; Yang Y; Chen J; Liu L; Jian Z; Li K; Wang G; Gao T; Song P; Li C
    J Invest Dermatol; 2019 Oct; 139(10):2174-2184.e4. PubMed ID: 30998983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HMGB1 deficiency reduces H
    Mou K; Liu W; Miao Y; Cao F; Li P
    J Cell Mol Med; 2018 Dec; 22(12):6148-6156. PubMed ID: 30338917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histamine effect on melanocyte proliferation and vitiliginous keratinocyte survival.
    Kim NH; Lee AY
    Exp Dermatol; 2010 Dec; 19(12):1073-9. PubMed ID: 21054556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo.
    Wagner RY; Luciani F; Cario-André M; Rubod A; Petit V; Benzekri L; Ezzedine K; Lepreux S; Steingrimsson E; Taieb A; Gauthier Y; Larue L; Delmas V
    J Invest Dermatol; 2015 Jul; 135(7):1810-1819. PubMed ID: 25634357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Epidermal Endocrine Estrogen Protects Human Melanocytes against Oxidative Stress, a Novel Insight into Vitiligo Pathology.
    Yamamoto A; Yang L; Kuroda Y; Guo J; Teng L; Tsuruta D; Katayama I
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monobenzyl ether of hydroquinone and 4-tertiary butyl phenol activate markedly different physiological responses in melanocytes: relevance to skin depigmentation.
    Hariharan V; Klarquist J; Reust MJ; Koshoffer A; McKee MD; Boissy RE; Le Poole IC
    J Invest Dermatol; 2010 Jan; 130(1):211-20. PubMed ID: 19657355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural and functional alterations of mitochondria in perilesional vitiligo skin.
    Prignano F; Pescitelli L; Becatti M; Di Gennaro P; Fiorillo C; Taddei N; Lotti T
    J Dermatol Sci; 2009 Jun; 54(3):157-67. PubMed ID: 19282153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo.
    Jimbow K; Chen H; Park JS; Thomas PD
    Br J Dermatol; 2001 Jan; 144(1):55-65. PubMed ID: 11167683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aberrant expression of complement regulatory proteins, membrane cofactor protein and decay accelerating factor, in the involved epidermis of patients with vitiligo.
    van den Wijngaard RM; Asghar SS; Pijnenborg AC; Tigges AJ; Westerhof W; Das PK
    Br J Dermatol; 2002 Jan; 146(1):80-7. PubMed ID: 11841370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High mobility group box1 (HMGB1) in relation to cutaneous inflammation in systemic lupus erythematosus (SLE).
    Abdulahad DA; Westra J; Reefman E; Zuidersma E; Bijzet J; Limburg PC; Kallenberg CG; Bijl M
    Lupus; 2013 May; 22(6):597-606. PubMed ID: 23549344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-155 is Dysregulated in the Skin of Patients with Vitiligo and Inhibits Melanogenesis-associated Genes in Melanocytes and Keratinocytes.
    Šahmatova L; Tankov S; Prans E; Aab A; Hermann H; Reemann P; Pihlap M; Karelson M; Abram K; Kisand K; Kingo K; Rebane A
    Acta Derm Venereol; 2016 Aug; 96(6):742-7. PubMed ID: 26941046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced Nrf2 activation in PI3K phosphorylation-impaired vitiliginous keratinocytes increases susceptibility to ROS-generating chemical-induced apoptosis.
    Kim H; Park CS; Lee AY
    Environ Toxicol; 2017 Dec; 32(12):2481-2491. PubMed ID: 28836394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered levels of LXR-α: crucial implications in the pathogenesis of vitiligo.
    Kumar R; Parsad D; Kanwar AJ; Kaul D
    Exp Dermatol; 2012 Nov; 21(11):853-8. PubMed ID: 23163651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GATA3 ameliorates melanocyte injuries in vitiligo through SIRT3-mediated HMGB1 deacetylation.
    Nie XJ; Hao BZ; Zhang BL; Li YY
    J Dermatol; 2023 Apr; 50(4):472-484. PubMed ID: 36412048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keratinocyte dysfunction in vitiligo epidermis: cytokine microenvironment and correlation to keratinocyte apoptosis.
    Moretti S; Fabbri P; Baroni G; Berti S; Bani D; Berti E; Nassini R; Lotti T; Massi D
    Histol Histopathol; 2009 Jul; 24(7):849-57. PubMed ID: 19475531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HMGB1/RAGE axis promotes autophagy and protects keratinocytes from ultraviolet radiation-induced cell death.
    Mou K; Liu W; Han D; Li P
    J Dermatol Sci; 2017 Mar; 85(3):162-169. PubMed ID: 28012822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines at sites of lesions.
    Moretti S; Spallanzani A; Amato L; Hautmann G; Gallerani I; Fabiani M; Fabbri P
    Pigment Cell Res; 2002 Apr; 15(2):87-92. PubMed ID: 11936274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The melanocytorrhagic hypothesis of vitiligo tested on pigmented, stressed, reconstructed epidermis.
    Cario-André M; Pain C; Gauthier Y; Taïeb A
    Pigment Cell Res; 2007 Oct; 20(5):385-93. PubMed ID: 17850512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives.
    Wei G; Pan Y; Wang J; Xiong X; He Y; Xu J
    Clin Cosmet Investig Dermatol; 2022; 15():2177-2186. PubMed ID: 36267690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.