These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 27787956)

  • 1. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA.
    Mietkiewicz N; Kulakowski D
    Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.
    Andrus RA; Veblen TT; Harvey BJ; Hart SJ
    Ecol Appl; 2016 Apr; 26(3):700-11. PubMed ID: 27411244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.
    Harvey BJ; Donato DC; Turner MG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15120-5. PubMed ID: 25267633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fire severity and tree regeneration following bark beetle outbreaks: the role of outbreak stage and burning conditions.
    Harvey BJ; Donato DC; Romme WH; Turner MG
    Ecol Appl; 2014; 24(7):1608-25. PubMed ID: 29210226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.
    Lerch AP; Pfammatter JA; Bentz BJ; Raffa KF
    PLoS One; 2016; 11(10):e0164738. PubMed ID: 27783632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the legacy of historical thinning treatments foster resilience to bark beetle outbreaks in subalpine forests?
    Morris JE; Buonanduci MS; Agne MC; Battaglia MA; Harvey BJ
    Ecol Appl; 2022 Jan; 32(1):e02474. PubMed ID: 34653267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem.
    Buotte PC; Hicke JA; Preisler HK; Abatzoglou JT; Raffa KF; Logan JA
    Ecol Appl; 2016 Dec; 26(8):2505-2522. PubMed ID: 27907251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting.
    Howell A; Bretfeld M; Belmont E
    Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire.
    Arbellay E; Daniels LD; Mansfield SD; Chang AS
    Tree Physiol; 2017 Dec; 37(12):1611-1621. PubMed ID: 29121262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snagfall the first decade after severe bark beetle infestation of high-elevation forests in Colorado, USA.
    Rhoades CC; Hubbard RM; Hood PR; Starr BJ; Tinker DB; Elder K
    Ecol Appl; 2020 Apr; 30(3):e02059. PubMed ID: 31849139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA.
    Wayman RB; Safford HD
    Ecol Appl; 2021 Apr; 31(3):e02287. PubMed ID: 33426715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks.
    Seidl R; Donato DC; Raffa KF; Turner MG
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13075-13080. PubMed ID: 27821739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience.
    Hood SM; Baker S; Sala A
    Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vegetation dynamics following compound disturbance in a dry pine forest: fuel treatment then bark beetle outbreak.
    Crotteau JS; Keyes CR; Hood SM; Larson AJ
    Ecol Appl; 2020 Mar; 30(2):e02023. PubMed ID: 31628705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of secondary disturbances on lodgepole pine stand development in Rocky Mountain National Park.
    Sibold JS; Veblen TT; Chipko K; Lawson L; Mathis E; Scott J
    Ecol Appl; 2007 Sep; 17(6):1638-55. PubMed ID: 17913129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks.
    Hart SJ; Schoennagel T; Veblen TT; Chapman TB
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4375-80. PubMed ID: 25831541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.
    Erbilgin N; Cale JA; Hussain A; Ishangulyyeva G; Klutsch JG; Najar A; Zhao S
    Oecologia; 2017 Jun; 184(2):469-478. PubMed ID: 28421324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests.
    Nelson KN; Turner MG; Romme WH; Tinker DB
    Ecol Appl; 2016 Dec; 26(8):2422-2436. PubMed ID: 27875007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles.
    Wong CM; Daniels LD
    Glob Chang Biol; 2017 May; 23(5):1926-1941. PubMed ID: 27901296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Larger Resin Ducts Are Linked to the Survival of Lodgepole Pine Trees During Mountain Pine Beetle Outbreak.
    Zhao S; Erbilgin N
    Front Plant Sci; 2019; 10():1459. PubMed ID: 31850006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.