These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27787975)

  • 1. Phosphonate Biochemistry.
    Horsman GP; Zechel DL
    Chem Rev; 2017 Apr; 117(8):5704-5783. PubMed ID: 27787975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonate biosynthesis and catabolism: a treasure trove of unusual enzymology.
    Peck SC; van der Donk WA
    Curr Opin Chem Biol; 2013 Aug; 17(4):580-8. PubMed ID: 23870698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional importance of bacterial oxidative phosphonate pathways.
    Pallitsch K; Zechel DL
    Biochem Soc Trans; 2023 Apr; 51(2):487-499. PubMed ID: 36892197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fosmidomycin biosynthesis diverges from related phosphonate natural products.
    Parkinson EI; Erb A; Eliot AC; Ju KS; Metcalf WW
    Nat Chem Biol; 2019 Nov; 15(11):1049-1056. PubMed ID: 31451762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival.
    Manav MC; Sofos N; Hove-Jensen B; Brodersen DE
    Bioessays; 2018 Nov; 40(11):e1800091. PubMed ID: 30198068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The enzymatic conversion of phosphonates to phosphate by bacteria.
    Kamat SS; Raushel FM
    Curr Opin Chem Biol; 2013 Aug; 17(4):589-96. PubMed ID: 23830682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of 2-hydroxyethylphosphonate, an unexpected intermediate common to multiple phosphonate biosynthetic pathways.
    Shao Z; Blodgett JA; Circello BT; Eliot AC; Woodyer R; Li G; van der Donk WA; Metcalf WW; Zhao H
    J Biol Chem; 2008 Aug; 283(34):23161-8. PubMed ID: 18544530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The predominance of nucleotidyl activation in bacterial phosphonate biosynthesis.
    Rice K; Batul K; Whiteside J; Kelso J; Papinski M; Schmidt E; Pratasouskaya A; Wang D; Sullivan R; Bartlett C; Weadge JT; Van der Kamp MW; Moreno-Hagelsieb G; Suits MD; Horsman GP
    Nat Commun; 2019 Aug; 10(1):3698. PubMed ID: 31420548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Microbial Degradation of Natural and Anthropogenic Phosphonates.
    Ruffolo F; Dinhof T; Murray L; Zangelmi E; Chin JP; Pallitsch K; Peracchi A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphonate utilization by bacterial cultures and enrichments from environmental samples.
    Schowanek D; Verstraete W
    Appl Environ Microbiol; 1990 Apr; 56(4):895-903. PubMed ID: 2339877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules.
    McGrath JW; Chin JP; Quinn JP
    Nat Rev Microbiol; 2013 Jun; 11(6):412-9. PubMed ID: 23624813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphonates and their degradation by microorganisms.
    Kononova SV; Nesmeyanova MA
    Biochemistry (Mosc); 2002 Feb; 67(2):184-95. PubMed ID: 11952414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valinophos Reveals a New Route in Microbial Phosphonate Biosynthesis That Is Broadly Conserved in Nature.
    Zhang Y; Chen L; Wilson JA; Cui J; Roodhouse H; Kayrouz C; Pham TM; Ju KS
    J Am Chem Soc; 2022 Jun; 144(22):9938-9948. PubMed ID: 35617676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-Cell Detection of C-P Bonds in Bacteria.
    Bartlett C; Bansal S; Burnett A; Suits MD; Schaefer J; Cegelski L; Horsman GP; Weadge JT
    Biochemistry; 2017 Nov; 56(44):5870-5873. PubMed ID: 29068202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of Escherichia coli on some organophosphonic acids.
    Alam AU; Bishop SH
    Can J Microbiol; 1969 Sep; 15(9):1043-6. PubMed ID: 4906190
    [No Abstract]   [Full Text] [Related]  

  • 16. Benzene from bacterial cleavage of the carbon-phosphorus bond of phenylphosphonates.
    Cook AM; Daughton CG; Alexander M
    Biochem J; 1979 Nov; 184(2):453-5. PubMed ID: 393257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive hydrolysis of phosphonates as unexpected behaviour of the known His6-organophosphorus hydrolase.
    Lyagin IV; Andrianova MS; Efremenko EN
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5829-38. PubMed ID: 26932546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling.
    Chin JP; McGrath JW; Quinn JP
    Curr Opin Chem Biol; 2016 Apr; 31():50-7. PubMed ID: 26836350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An inventory of early branch points in microbial phosphonate biosynthesis.
    Li S; Horsman GP
    Microb Genom; 2022 Feb; 8(2):. PubMed ID: 35188456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternate modes of binding in two crystal structures of alkaline phosphatase-inhibitor complexes.
    Holtz KM; Stec B; Myers JK; Antonelli SM; Widlanski TS; Kantrowitz ER
    Protein Sci; 2000 May; 9(5):907-15. PubMed ID: 10850800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.