These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27788007)

  • 21. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies.
    Yoon JH; Lim J; Yoon S
    ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications.
    Kameyama T; Ohno Y; Kurimoto T; Okazaki K; Uematsu T; Kuwabata S; Torimoto T
    Phys Chem Chem Phys; 2010 Feb; 12(8):1804-11. PubMed ID: 20145845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assembly of gold nanoparticles on a molecular ultrathin film: tuning the surface plasmon resonance.
    Rajesh K; Sreedhar B; Radhakrishnan TP
    Chemphyschem; 2010 Jun; 11(8):1780-6. PubMed ID: 20301170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of the surface pressure on the formation of Langmuir-Blodgett monolayer of nanoparticles.
    Huang S; Minami K; Sakaue H; Shingubara S; Takahagi T
    Langmuir; 2004 Mar; 20(6):2274-6. PubMed ID: 15835683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of hierarchical hybrid structures using bio-enabled layer-by-layer self-assembly.
    Hnilova M; Karaca BT; Park J; Jia C; Wilson BR; Sarikaya M; Tamerler C
    Biotechnol Bioeng; 2012 May; 109(5):1120-30. PubMed ID: 22170333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Covalently Conjugated Gold-Porphyrin Nanostructures.
    Spitaleri L; Gangemi CMA; Purrello R; Nicotra G; Trusso Sfrazzetto G; Casella G; Casarin M; Gulino A
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32825720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods.
    Pietrobon B; McEachran M; Kitaev V
    ACS Nano; 2009 Jan; 3(1):21-6. PubMed ID: 19206244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticle self-assembly assisted by polymers: the role of shear stress in the nanoparticle arrangement of Langmuir and Langmuir-Blodgett films.
    Martín-García B; Velázquez MM
    Langmuir; 2014 Jan; 30(2):509-16. PubMed ID: 24380582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing Gold Nanoparticle Size and Shape for the Fabrication of SERS Substrates by Means of the Langmuir-Blodgett Technique.
    Tahghighi M; Janner D; Ignés-Mullol J
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active Plasmonics with Responsive, Binary Assemblies of Gold Nanorods and Nanospheres.
    Szustakiewicz P; Kowalska N; Bagiński M; Lewandowski W
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Langmuir and Langmuir-Blodgett films of bidisperse silica nanoparticles.
    Detrich A; Deák A; Hild E; Kovács AL; Hórvölgyi Z
    Langmuir; 2010 Feb; 26(4):2694-9. PubMed ID: 20141210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deterministic nanoparticle assemblies: from substrate to solution.
    Barcelo SJ; Kim A; Gibson GA; Norris KJ; Yamakawa M; Li Z
    Nanotechnology; 2014 Apr; 25(15):155302. PubMed ID: 24642827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-Area Nanoparticle Films by Continuous Automated Langmuir-Blodgett Assembly and Deposition.
    Li X; Gilchrist JF
    Langmuir; 2016 Feb; 32(5):1220-6. PubMed ID: 26738603
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties.
    Höller RP; Dulle M; Thomä S; Mayer M; Steiner AM; Förster S; Fery A; Kuttner C; Chanana M
    ACS Nano; 2016 Jun; 10(6):5740-50. PubMed ID: 26982386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Top-up fabrication of gold nanorings.
    Scheeler SP; Lehr D; Kley EB; Pacholski C
    Chem Asian J; 2014 Aug; 9(8):2072-6. PubMed ID: 24819890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres.
    Sugawa K; Akiyama T; Tanoue Y; Harumoto T; Yanagida S; Yasumori A; Tomita S; Otsuki J
    Phys Chem Chem Phys; 2015 Sep; 17(33):21182-9. PubMed ID: 25558009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface plasmon resonance as a tool for investigation of non-covalent nanoparticle interactions in heterogeneous self-assembly & disassembly systems.
    Shevchenko KG; Cherkasov VR; Tregubov AA; Nikitin PI; Nikitin MP
    Biosens Bioelectron; 2017 Feb; 88():3-8. PubMed ID: 27665167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast optical method for characterizing plasmonic nanoparticle adhesion on functionalized surfaces.
    Mérai L; Janovák L; Kovács DS; Szenti I; Vásárhelyi L; Kukovecz Á; Dékány I; Kónya Z; Sebők D
    Anal Bioanal Chem; 2020 May; 412(14):3395-3404. PubMed ID: 31875240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.