These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27788013)

  • 1. Electrosynthesis Using a Recyclable Mediator-Electrolyte System Based on Ionically Tagged Phenyl Iodide and 1,1,1,3,3,3-Hexafluoroisopropanol.
    Broese T; Francke R
    Org Lett; 2016 Nov; 18(22):5896-5899. PubMed ID: 27788013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Benzoxazoles Using Electrochemically Generated Hypervalent Iodine.
    Koleda O; Broese T; Noetzel J; Roemelt M; Suna E; Francke R
    J Org Chem; 2017 Nov; 82(22):11669-11681. PubMed ID: 28800234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Use of Polyelectrolytes and Polymediators in Organic Electrosynthesis.
    Schille B; Giltzau NO; Francke R
    Angew Chem Int Ed Engl; 2018 Jan; 57(2):422-426. PubMed ID: 29160932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a novel environmentally friendly electrolytic system by using recyclable solid-supported bases for in situ generation of a supporting electrolyte from methanol as a solvent: application for anodic methoxylation of organic compounds.
    Tajima T; Fuchigami T
    Chemistry; 2005 Oct; 11(21):6192-6. PubMed ID: 16075438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an electrolytic system using solid-supported bases for in situ generation of a supporting electrolyte from methanol as a solvent.
    Tajima T; Fuchigami T
    J Am Chem Soc; 2005 Mar; 127(9):2848-9. PubMed ID: 15740109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalyst- and Supporting-Electrolyte-Free Electrosynthesis of Benzothiazoles and Thiazolopyridines in Continuous Flow.
    Folgueiras-Amador AA; Qian XY; Xu HC; Wirth T
    Chemistry; 2018 Jan; 24(2):487-491. PubMed ID: 29125202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.
    Geiger WE; Barrière F
    Acc Chem Res; 2010 Jul; 43(7):1030-9. PubMed ID: 20345126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TEMPO-Modified Polymethacrylates as Mediators in Electrosynthesis: Influence of the Molecular Weight on Redox Properties and Electrocatalytic Activity.
    Prudlik A; Mohebbati N; Hildebrandt L; Heck A; Nuhn L; Francke R
    Chemistry; 2023 Feb; 29(11):e202202730. PubMed ID: 36426862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source of Selectivity in Oxidative Cross-Coupling of Aryls by Solvent Effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol.
    Elsler B; Wiebe A; Schollmeyer D; Dyballa KM; Franke R; Waldvogel SR
    Chemistry; 2015 Aug; 21(35):12321-5. PubMed ID: 26189655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in iodine mediated electrochemical oxidative cross-coupling.
    Liu K; Song C; Lei A
    Org Biomol Chem; 2018 Apr; 16(14):2375-2387. PubMed ID: 29546915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox-active electrolyte for supercapacitor application.
    Frackowiak E; Meller M; Menzel J; Gastol D; Fic K
    Faraday Discuss; 2014; 172():179-98. PubMed ID: 25426821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quasi-liquid polymer-based cobalt redox mediator electrolyte for dye-sensitized solar cells.
    Bhagavathi Achari M; Elumalai V; Vlachopoulos N; Safdari M; Gao J; Gardner JM; Kloo L
    Phys Chem Chem Phys; 2013 Oct; 15(40):17419-25. PubMed ID: 24022525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of an organic redox mediator and optimization of an organic counter electrode for efficient transparent bifacial dye-sensitized solar cells.
    Li X; Ku Z; Rong Y; Liu G; Liu L; Liu T; Hu M; Yang Y; Wang H; Xu M; Xiang P; Han H
    Phys Chem Chem Phys; 2012 Nov; 14(41):14383-90. PubMed ID: 23010982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances of Cobalt(II/III) Redox Couples for Dye-Sensitized Solar Cell Applications.
    Giribabu L; Bolligarla R; Panigrahi M
    Chem Rec; 2015 Aug; 15(4):760-88. PubMed ID: 26081939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries.
    Liang Z; Lu YC
    J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phenyl-capped aniline tetramer for Z907/tert-butylpyridine-based dye-sensitized solar cells and molecular modelling of the device.
    Manseki K; Yu Y; Yanagida S
    Chem Commun (Camb); 2013 Feb; 49(14):1416-8. PubMed ID: 23306553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.