These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 27788126)
1. 3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study. Jung SY; Lee SJ; Kim HY; Park HS; Wang Z; Kim HJ; Yoo JJ; Chung SM; Kim HS Biofabrication; 2016 Oct; 8(4):045015. PubMed ID: 27788126 [TBL] [Abstract][Full Text] [Related]
2. Triple-layered polyurethane prosthesis with wrinkles for repairing partial tracheal defects. Lee JH; Park HS; Oh SH; Lee JH; Kim JR; Kim HJ; Jung SY; Chung SM; Choi HS; Kim HS Laryngoscope; 2014 Dec; 124(12):2757-63. PubMed ID: 24986797 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study. Kim HY; Jung SY; Lee SJ; Lee HJ; Truong MD; Kim HS Laryngoscope; 2019 Feb; 129(2):351-357. PubMed ID: 30229920 [TBL] [Abstract][Full Text] [Related]
4. Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Chang JW; Park SA; Park JK; Choi JW; Kim YS; Shin YS; Kim CH Artif Organs; 2014 Jun; 38(6):E95-E105. PubMed ID: 24750044 [TBL] [Abstract][Full Text] [Related]
5. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair. Ott LM; Zabel TA; Walker NK; Farris AL; Chakroff JT; Ohst DG; Johnson JK; Gehrke SH; Weatherly RA; Detamore MS Biomed Mater; 2016 Apr; 11(2):025020. PubMed ID: 27097554 [TBL] [Abstract][Full Text] [Related]
6. Development of a flexible 3D printed scaffold with a cell-adhesive surface for artificial trachea. Ahn CB; Son KH; Yu YS; Kim TH; Lee JI; Lee JW Biomed Mater; 2019 Jul; 14(5):055001. PubMed ID: 31207592 [TBL] [Abstract][Full Text] [Related]
7. Designing a tissue-engineered tracheal scaffold for preclinical evaluation. Best CA; Pepper VK; Ohst D; Bodnyk K; Heuer E; Onwuka EA; King N; Strouse R; Grischkan J; Breuer CK; Johnson J; Chiang T Int J Pediatr Otorhinolaryngol; 2018 Jan; 104():155-160. PubMed ID: 29287858 [TBL] [Abstract][Full Text] [Related]
8. Deconstructing tissue engineered trachea: Assessing the role of synthetic scaffolds, segmental replacement and cell seeding on graft performance. Dharmadhikari S; Liu L; Shontz K; Wiet M; White A; Goins A; Akula H; Johnson J; Reynolds SD; Breuer CK; Chiang T Acta Biomater; 2020 Jan; 102():181-191. PubMed ID: 31707085 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Wen YT; Dai NT; Hsu SH Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604 [TBL] [Abstract][Full Text] [Related]
10. Segmental tracheal reconstruction by 3D-printed scaffold: Pivotal role of asymmetrically porous membrane. Lee DY; Park SA; Lee SJ; Kim TH; Oh SH; Lee JH; Kwon SK Laryngoscope; 2016 Sep; 126(9):E304-9. PubMed ID: 26690559 [TBL] [Abstract][Full Text] [Related]
11. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
12. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Hung KC; Tseng CS; Dai LG; Hsu SH Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related]
14. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction. Pan S; Zhong Y; Shan Y; Liu X; Xiao Y; Shi H J Biomed Mater Res A; 2019 Feb; 107(2):360-370. PubMed ID: 30485676 [TBL] [Abstract][Full Text] [Related]
15. Long-segmental tracheal reconstruction in rabbits with pedicled Tissue-engineered trachea based on a 3D-printed scaffold. Gao B; Jing H; Gao M; Wang S; Fu W; Zhang X; He X; Zheng J Acta Biomater; 2019 Oct; 97():177-186. PubMed ID: 31352107 [TBL] [Abstract][Full Text] [Related]
16. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair in a goat model. Xia D; Jin D; Wang Q; Gao M; Zhang J; Zhang H; Bai J; Feng B; Chen M; Huang Y; Zhong Y; Witman N; Wang W; Xu Z; Zhang H; Yin M; Fu W J Tissue Eng Regen Med; 2019 Apr; 13(4):694-703. PubMed ID: 30793848 [TBL] [Abstract][Full Text] [Related]
17. Circumferential Three-Dimensional-Printed Tracheal Grafts: Research Model Feasibility and Early Results. Bhora FY; Lewis EE; Rehmani SS; Ayub A; Raad W; Al-Ayoubi AM; Lebovics RS Ann Thorac Surg; 2017 Sep; 104(3):958-963. PubMed ID: 28619543 [TBL] [Abstract][Full Text] [Related]
18. [FABRICATION AND BIOCOMPATIBILITY EVALUATION OF POLYURETHANE- ACELLULAR MATRIX COMPOSITE SCAFFOLD IN VITRO AND IN VIVO]. Xiao Y; Zhang J; Lu Y; Yuan H; Bai L; Jiang X; Cheng J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2015 Aug; 29(8):1016-21. PubMed ID: 26677626 [TBL] [Abstract][Full Text] [Related]
19. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [TBL] [Abstract][Full Text] [Related]
20. Fu J; Xiang Y; Ni M; Qu X; Zhou Y; Hao L; Zhang G; Chen J Biomed Res Int; 2020; 2020():4542302. PubMed ID: 33335923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]