These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27788326)

  • 21. Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils.
    Zhang M; Engelhardt I; Šimůnek J; Bradford SA; Kasel D; Berns AE; Vereecken H; Klumpp E
    Environ Pollut; 2017 Feb; 221():470-479. PubMed ID: 28012669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deposition of protein-coated multi-walled carbon nanotubes on oxide surfaces and the retention in a silicon micromodel.
    Song J; Wang Q; Zeng Y; Liu Y; Jiang W
    J Hazard Mater; 2019 Aug; 375():107-114. PubMed ID: 31054527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport of oxytetracycline through saturated porous media: role of surface chemical heterogeneity.
    Jin Y; Liu M; Zhang Q; Farooq U; Chen W; Lu T; Qi Z
    Environ Sci Process Impacts; 2022 Dec; 24(12):2368-2377. PubMed ID: 36317984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter.
    Adrian YF; Schneidewind U; Bradford SA; Šimůnek J; Klumpp E; Azzam R
    Environ Pollut; 2019 Dec; 255(Pt 1):113124. PubMed ID: 31622956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling the complexities of the velocity dependency of E. coli retention and release parameters in saturated porous media.
    Sasidharan S; Bradford SA; Torkzaban S; Ye X; Vanderzalm J; Du X; Page D
    Sci Total Environ; 2017 Dec; 603-604():406-415. PubMed ID: 28641182
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutually facilitated co-transport of two different viruses through reactive porous media.
    Xu S; Attinti R; Adams E; Wei J; Kniel K; Zhuang J; Jin Y
    Water Res; 2017 Oct; 123():40-48. PubMed ID: 28646749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media.
    Tian Y; Gao B; Morales VL; Wang Y; Wu L
    J Hazard Mater; 2012 Nov; 239-240():333-9. PubMed ID: 23009789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of solution chemistry on multi-walled carbon nanotube deposition and mobilization in clean porous media.
    Tian Y; Gao B; Wu L; Muñoz-Carpena R; Huang Q
    J Hazard Mater; 2012 Sep; 231-232():79-87. PubMed ID: 22776831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An explanation for differences in the process of colloid adsorption in batch and column studies.
    Treumann S; Torkzaban S; Bradford SA; Visalakshan RM; Page D
    J Contam Hydrol; 2014 Aug; 164():219-29. PubMed ID: 24997430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and deposition of functionalized CdTe nanoparticles in saturated porous media.
    Torkzaban S; Kim Y; Mulvihill M; Wan J; Tokunaga TK
    J Contam Hydrol; 2010 Nov; 118(3-4):208-17. PubMed ID: 21056917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flagella and Their Properties Affect the Transport and Deposition Behaviors of
    Zhang M; He L; Jin X; Bai F; Tong M; Ni J
    Environ Sci Technol; 2021 Apr; 55(8):4964-4973. PubMed ID: 33770437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of different charged poly (amido amine) dendrimer on the transport and deposition of bacteria in porous media.
    He L; Wu D; Tong M
    Water Res; 2019 Sep; 161():364-371. PubMed ID: 31220762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rapid screening technique for estimating nanoparticle transport in porous media.
    Bouchard D; Zhang W; Chang X
    Water Res; 2013 Aug; 47(12):4086-94. PubMed ID: 23141766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient prevention of nanomaterials transport in the porous media by treatment with polyelectrolytes.
    Soenaryo T; Murata S; Zinchenko A
    Chemosphere; 2018 Nov; 210():567-576. PubMed ID: 30029149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colloid straining within saturated heterogeneous porous media.
    Porubcan AA; Xu S
    Water Res; 2011 Feb; 45(4):1796-806. PubMed ID: 21185052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport and retention of polymeric and other engineered nanoparticles in porous media.
    Xin X; Judy JD; Zhao F; Goodrich SL; Sumerlin BS; Stoffella PJ; He Z
    NanoImpact; 2021 Oct; 24():100361. PubMed ID: 35559820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature dependency of virus and nanoparticle transport and retention in saturated porous media.
    Sasidharan S; Torkzaban S; Bradford SA; Cook PG; Gupta VVSR
    J Contam Hydrol; 2017 Jan; 196():10-20. PubMed ID: 27979462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media.
    Lyu X; Liu X; Sun Y; Gao B; Ji R; Wu J; Xue Y
    Environ Pollut; 2020 Nov; 266(Pt 1):115343. PubMed ID: 32814265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.