These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 27788401)
1. Electromagnetic induction of nanoscale zerovalent iron particles accelerates the degradation of chlorinated dense non-aqueous phase liquid: Proof of concept. Phenrat T; Kumloet I Water Res; 2016 Dec; 107():19-28. PubMed ID: 27788401 [TBL] [Abstract][Full Text] [Related]
2. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept. Phenrat T; Thongboot T; Lowry GV Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836 [TBL] [Abstract][Full Text] [Related]
3. Electromagnetic induction of foam-based nanoscale zerovalent iron (NZVI) particles to thermally enhance non-aqueous phase liquid (NAPL) volatilization in unsaturated porous media: Proof of concept. Srirattana S; Piaowan K; Lowry GV; Phenrat T Chemosphere; 2017 Sep; 183():323-331. PubMed ID: 28551209 [TBL] [Abstract][Full Text] [Related]
4. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. Taghavy A; Costanza J; Pennell KD; Abriola LM J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664 [TBL] [Abstract][Full Text] [Related]
6. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification. Wang Q; Jeong SW; Choi H J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819 [TBL] [Abstract][Full Text] [Related]
7. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Rajajayavel SR; Ghoshal S Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369 [TBL] [Abstract][Full Text] [Related]
8. Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: A field study. Ahn JY; Kim C; Kim HS; Hwang KY; Hwang I Water Res; 2016 Dec; 107():57-65. PubMed ID: 27837733 [TBL] [Abstract][Full Text] [Related]
9. PCE DNAPL degradation using ferrous iron solid mixture (ISM). Lee HK; Do SH; Batchelor B; Jo YH; Kong SH Chemosphere; 2009 Aug; 76(8):1082-7. PubMed ID: 19439340 [TBL] [Abstract][Full Text] [Related]
10. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743 [TBL] [Abstract][Full Text] [Related]
11. Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI. Yang X; Zhang C; Liu F; Tang J Chemosphere; 2021 Jan; 262():127707. PubMed ID: 32755691 [TBL] [Abstract][Full Text] [Related]
12. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone. Rivett MO; Dearden RA; Wealthall GP J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120 [TBL] [Abstract][Full Text] [Related]
13. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater. Li H; Chen YQ; Chen S; Wang XL; Guo S; Qiu YF; Liu YD; Duan XL; Yu YJ PLoS One; 2017; 12(3):e0172337. PubMed ID: 28264061 [TBL] [Abstract][Full Text] [Related]
14. Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni. Kumar MA; Bae S; Han S; Chang Y; Lee W J Hazard Mater; 2017 Oct; 340():399-406. PubMed ID: 28735183 [TBL] [Abstract][Full Text] [Related]
15. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G Water Res; 2018 May; 135():1-10. PubMed ID: 29438739 [TBL] [Abstract][Full Text] [Related]
16. A comparison of the effects of natural organic matter on sulfidated and nonsulfidated nanoscale zerovalent iron colloidal stability, toxicity, and reactivity to trichloroethylene. Han Y; Ghoshal S; Lowry GV; Chen J Sci Total Environ; 2019 Jun; 671():254-261. PubMed ID: 30928754 [TBL] [Abstract][Full Text] [Related]
17. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms. Phenrat T; Liu Y; Tilton RD; Lowry GV Environ Sci Technol; 2009 Mar; 43(5):1507-14. PubMed ID: 19350927 [TBL] [Abstract][Full Text] [Related]
18. Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer. Chen MY; Su YF; Shih YH J Environ Manage; 2014 Nov; 144():88-92. PubMed ID: 24929499 [TBL] [Abstract][Full Text] [Related]
19. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Liu Y; Lowry GV Environ Sci Technol; 2006 Oct; 40(19):6085-90. PubMed ID: 17051804 [TBL] [Abstract][Full Text] [Related]
20. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]