These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 27789044)
1. The Effects of Oxygen on Ultrasound-Induced Blood-Brain Barrier Disruption in Mice. McDannold N; Zhang Y; Vykhodtseva N Ultrasound Med Biol; 2017 Feb; 43(2):469-475. PubMed ID: 27789044 [TBL] [Abstract][Full Text] [Related]
2. Blood-brain barrier disruption and vascular damage induced by ultrasound bursts combined with microbubbles can be influenced by choice of anesthesia protocol. McDannold N; Zhang Y; Vykhodtseva N Ultrasound Med Biol; 2011 Aug; 37(8):1259-70. PubMed ID: 21645965 [TBL] [Abstract][Full Text] [Related]
3. MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. McDannold N; Vykhodtseva N; Raymond S; Jolesz FA; Hynynen K Ultrasound Med Biol; 2005 Nov; 31(11):1527-37. PubMed ID: 16286030 [TBL] [Abstract][Full Text] [Related]
4. Use of ultrasound pulses combined with Definity for targeted blood-brain barrier disruption: a feasibility study. McDannold N; Vykhodtseva N; Hynynen K Ultrasound Med Biol; 2007 Apr; 33(4):584-90. PubMed ID: 17337109 [TBL] [Abstract][Full Text] [Related]
5. The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. Park J; Zhang Y; Vykhodtseva N; Jolesz FA; McDannold NJ J Control Release; 2012 Aug; 162(1):134-42. PubMed ID: 22709590 [TBL] [Abstract][Full Text] [Related]
6. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. Hynynen K; McDannold N; Vykhodtseva N; Raymond S; Weissleder R; Jolesz FA; Sheikov N J Neurosurg; 2006 Sep; 105(3):445-54. PubMed ID: 16961141 [TBL] [Abstract][Full Text] [Related]
7. Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption. McDannold N; Vykhodtseva N; Hynynen K Ultrasound Med Biol; 2008 Jun; 34(6):930-7. PubMed ID: 18294757 [TBL] [Abstract][Full Text] [Related]
9. Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. O'Reilly MA; Hynynen K Radiology; 2012 Apr; 263(1):96-106. PubMed ID: 22332065 [TBL] [Abstract][Full Text] [Related]
10. Delivery of Liposomes with Different Sizes to Mice Brain after Sonication by Focused Ultrasound in the Presence of Microbubbles. Shen Y; Guo J; Chen G; Chin CT; Chen X; Chen J; Wang F; Chen S; Dan G Ultrasound Med Biol; 2016 Jul; 42(7):1499-511. PubMed ID: 27126236 [TBL] [Abstract][Full Text] [Related]
11. Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: a multiparametric study in a primate model. Horodyckid C; Canney M; Vignot A; Boisgard R; Drier A; Huberfeld G; François C; Prigent A; Santin MD; Adam C; Willer JC; Lafon C; Chapelon JY; Carpentier A J Neurosurg; 2017 Apr; 126(4):1351-1361. PubMed ID: 27285538 [TBL] [Abstract][Full Text] [Related]
12. Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. McDannold N; Vykhodtseva N; Hynynen K Phys Med Biol; 2006 Feb; 51(4):793-807. PubMed ID: 16467579 [TBL] [Abstract][Full Text] [Related]
13. Paramagnetic perfluorocarbon-filled albumin-(Gd-DTPA) microbubbles for the induction of focused-ultrasound-induced blood-brain barrier opening and concurrent MR and ultrasound imaging. Liao AH; Liu HL; Su CH; Hua MY; Yang HW; Weng YT; Hsu PH; Huang SM; Wu SY; Wang HE; Yen TC; Li PC Phys Med Biol; 2012 May; 57(9):2787-802. PubMed ID: 22510713 [TBL] [Abstract][Full Text] [Related]
14. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening. Kamimura HA; Wang S; Wu SY; Karakatsani ME; Acosta C; Carneiro AA; Konofagou EE Phys Med Biol; 2015 Oct; 60(19):7695-712. PubMed ID: 26394091 [TBL] [Abstract][Full Text] [Related]
15. Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Hynynen K; McDannold N; Sheikov NA; Jolesz FA; Vykhodtseva N Neuroimage; 2005 Jan; 24(1):12-20. PubMed ID: 15588592 [TBL] [Abstract][Full Text] [Related]
16. Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. Wang S; Samiotaki G; Olumolade O; Feshitan JA; Konofagou EE Ultrasound Med Biol; 2014 Jan; 40(1):130-7. PubMed ID: 24239362 [TBL] [Abstract][Full Text] [Related]
17. Focused ultrasound microbubble destruction-mediated changes in blood-brain barrier permeability assessed by contrast-enhanced magnetic resonance imaging. Wang F; Cheng Y; Mei J; Song Y; Yang YQ; Liu Y; Wang Z J Ultrasound Med; 2009 Nov; 28(11):1501-9. PubMed ID: 19854965 [TBL] [Abstract][Full Text] [Related]
18. Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles. Park J; Zhang Y; Vykhodtseva N; Akula JD; McDannold NJ PLoS One; 2012; 7(8):e42754. PubMed ID: 22912733 [TBL] [Abstract][Full Text] [Related]
19. The impact of pulse repetition frequency on microbubble activity and drug delivery during focused ultrasound-mediated blood-brain barrier opening. Fletcher SP; Zhang Y; Chisholm A; Martinez S; McDannold N Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38914104 [No Abstract] [Full Text] [Related]
20. Histologic evaluation of activation of acute inflammatory response in a mouse model following ultrasound-mediated blood-brain barrier using different acoustic pressures and microbubble doses. Pascal A; Li N; Lechtenberg KJ; Rosenberg J; Airan RD; James ML; Bouley DM; Pauly KB Nanotheranostics; 2020; 4(4):210-223. PubMed ID: 32802731 [No Abstract] [Full Text] [Related] [Next] [New Search]