BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27789227)

  • 1. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation.
    Oonuma K; Tanaka M; Nishitsuji K; Kato Y; Shimai K; Kusakabe TG
    Dev Biol; 2016 Dec; 420(1):178-185. PubMed ID: 27789227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona.
    Oonuma K; Kusakabe TG
    Dev Biol; 2019 Jan; 445(2):245-255. PubMed ID: 30502325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pigmented and nonpigmented ocelli in the brain vesicle of the ascidian larva.
    Horie T; Sakurai D; Ohtsuki H; Terakita A; Shichida Y; Usukura J; Kusakabe T; Tsuda M
    J Comp Neurol; 2008 Jul; 509(1):88-102. PubMed ID: 18421706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of ocellus photoreceptors in the ascidian Ciona intestinalis larva as revealed by an anti-arrestin antibody.
    Horie T; Orii H; Nakagawa M
    J Neurobiol; 2005 Dec; 65(3):241-50. PubMed ID: 16118796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis.
    Yoshida K; Saiga H
    Dev Biol; 2011 Jun; 354(1):144-50. PubMed ID: 21402066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function.
    D'Aniello S; D'Aniello E; Locascio A; Memoli A; Corrado M; Russo MT; Aniello F; Fucci L; Brown ER; Branno M
    Differentiation; 2006 Jun; 74(5):222-34. PubMed ID: 16759288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of pigment cells in the brain of ascidian tadpole larvae: insights into the origins of vertebrate pigment cells.
    Sato S; Yamamoto H
    Pigment Cell Res; 2001 Dec; 14(6):428-36. PubMed ID: 11775054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoaminergic modulation of photoreception in ascidian: evidence for a proto-hypothalamo-retinal territory.
    Razy-Krajka F; Brown ER; Horie T; Callebert J; Sasakura Y; Joly JS; Kusakabe TG; Vernier P
    BMC Biol; 2012 May; 10():45. PubMed ID: 22642675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest.
    Jeffery WR; Chiba T; Krajka FR; Deyts C; Satoh N; Joly JS
    Dev Biol; 2008 Dec; 324(1):152-60. PubMed ID: 18801357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of the vertebrate visual cycle.
    Takimoto N; Kusakabe T; Tsuda M
    Photochem Photobiol; 2007; 83(2):242-7. PubMed ID: 16930093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing cell fate in brain formation during embryogenesis of the ascidian Halocynthia roretzi.
    Taniguchi K; Nishida H
    Dev Growth Differ; 2004 Apr; 46(2):163-80. PubMed ID: 15066195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ascidian pigmented sensory organs: structures and developmental programs.
    Esposito R; Racioppi C; Pezzotti MR; Branno M; Locascio A; Ristoratore F; Spagnuolo A
    Genesis; 2015 Jan; 53(1):15-33. PubMed ID: 25382437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shared evolutionary origin of vertebrate neural crest and cranial placodes.
    Horie R; Hazbun A; Chen K; Cao C; Levine M; Horie T
    Nature; 2018 Aug; 560(7717):228-232. PubMed ID: 30069052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the vertebrate visual cycle: III. Distinct distribution of RPE65 and beta-carotene 15,15'-monooxygenase homologues in Ciona intestinalis.
    Takimoto N; Kusakabe T; Horie T; Miyamoto Y; Tsuda M
    Photochem Photobiol; 2006; 82(6):1468-74. PubMed ID: 16544957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migratory neuronal progenitors arise from the neural plate borders in tunicates.
    Stolfi A; Ryan K; Meinertzhagen IA; Christiaen L
    Nature; 2015 Nov; 527(7578):371-4. PubMed ID: 26524532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diverse ETS transcription factors mediate FGF signaling in the Ciona anterior neural plate.
    Gainous TB; Wagner E; Levine M
    Dev Biol; 2015 Mar; 399(2):218-25. PubMed ID: 25576927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain Sensory Organs of the Ascidian
    Olivo P; Palladino A; Ristoratore F; Spagnuolo A
    Front Cell Dev Biol; 2021; 9():701779. PubMed ID: 34552923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS.
    Haupaix N; Abitua PB; Sirour C; Yasuo H; Levine M; Hudson C
    Dev Biol; 2014 Oct; 394(1):170-80. PubMed ID: 25062608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution and development of brain sensory organs in molgulid ascidians.
    Jeffery WR
    Evol Dev; 2004; 6(3):170-9. PubMed ID: 15099304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreceptive systems in ascidians.
    Kusakabe T; Tsuda M
    Photochem Photobiol; 2007; 83(2):248-52. PubMed ID: 16939365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.