These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27789893)

  • 1. Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.
    Gómez M; Recasens J; Russo B; Martínez-Gomariz E
    Water Sci Technol; 2016 Oct; 74(8):1926-1935. PubMed ID: 27789893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the hydraulic performance of a gully under drainage conditions.
    Martins R; Leandro J; de Carvalho RF
    Water Sci Technol; 2014; 69(12):2423-30. PubMed ID: 24960003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced method for estimation of flow intercepted by drainage grate inlets on roads.
    Kim JS; Kwak CJ; Jo JB
    J Environ Manage; 2021 Feb; 279():111546. PubMed ID: 33187782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and numerical investigation of interactions between above and below ground drainage systems.
    Djordjević S; Saul AJ; Tabor GR; Blanksby J; Galambos I; Sabtu N; Sailor G
    Water Sci Technol; 2013; 67(3):535-42. PubMed ID: 23202557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inefficiency of storm water inlets as a source of urban floods.
    Despotovic J; Plavsic J; Stefanovic N; Pavlovic D
    Water Sci Technol; 2005; 51(2):139-45. PubMed ID: 15790237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of hydraulics and sediment capture efficiency in catchbasins.
    Tang Y; Zhu DZ; Rajaratnam N; van Duin B
    Water Sci Technol; 2016 Dec; 74(11):2717-2726. PubMed ID: 27973376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study on the hydraulic capacity of grate inlets with supercritical surface flow conditions.
    Kemper S; Schlenkhoff A
    Water Sci Technol; 2019 May; 79(9):1717-1726. PubMed ID: 31241477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodologies to study the surface hydraulic behaviour of urban catchments during storm events.
    Gómez M; Macchione F; Russo B
    Water Sci Technol; 2011; 63(11):2666-73. PubMed ID: 22049763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimise inlet condition and design parameters of a new sewer overflow screening device using numerical model.
    Aziz MA; Imteaz MA; Huda N; Naser J
    Water Sci Technol; 2014; 70(11):1880-7. PubMed ID: 25500477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-dimensional modelling of the interactions between heavy rainfall-runoff in an urban area and flooding flows from sewer networks and rivers.
    Kouyi GL; Fraisse D; Rivière N; Guinot V; Chocat B
    Water Sci Technol; 2009; 60(4):927-34. PubMed ID: 19700831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of the hydraulic capacity of urban grate inlet: a global and Latin American perspective.
    Cárdenas-Quintero M; Carvajal-Serna F
    Water Sci Technol; 2021 Jun; 83(11):2575-2596. PubMed ID: 34115615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overland flow computations in urban and industrial catchments from direct precipitation data using a two-dimensional shallow water model.
    Cea L; Garrido M; Puertas J; Jácome A; Del Río H; Suárez J
    Water Sci Technol; 2010; 62(9):1998-2008. PubMed ID: 21045324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface models for coupled modelling of runoff and sewer flow in urban areas.
    Ettrich N; Steiner K; Thomas M; Rothe R
    Water Sci Technol; 2005; 52(5):25-33. PubMed ID: 16248177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of source control systems for reducing runoff pollutant loads: feedback on experimental catchments within Paris conurbation.
    Bressy A; Gromaire MC; Lorgeoux C; Saad M; Leroy F; Chebbo G
    Water Res; 2014 Jun; 57():234-46. PubMed ID: 24726993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical evaluation of bioretention system for hydrologic performance.
    Li ZY; Lam KM
    Water Sci Technol; 2015; 71(11):1742-9. PubMed ID: 26038941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.
    Cho JH; Lee JH
    J Environ Manage; 2015 Nov; 163():2-10. PubMed ID: 26275596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of short-term rainfall forecasts for model-based flow prediction in urban drainage systems.
    Thorndahl S; Poulsen TS; Bøvith T; Borup M; Ahm M; Nielsen JE; Grum M; Rasmussen MR; Gill R; Mikkelsen PS
    Water Sci Technol; 2013; 68(2):472-8. PubMed ID: 23863443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.
    Soulis KX; Valiantzas JD; Ntoulas N; Kargas G; Nektarios PA
    J Environ Manage; 2017 Sep; 200():434-445. PubMed ID: 28618315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach of monitoring and physically-based modelling to investigate urban wash-off process on a road catchment near Paris.
    Hong Y; Bonhomme C; Le MH; Chebbo G
    Water Res; 2016 Oct; 102():96-108. PubMed ID: 27328366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between InfoWorks hydraulic results and a physical model of an urban drainage system.
    Rubinato M; Shucksmith J; Saul AJ; Shepherd W
    Water Sci Technol; 2013; 68(2):372-9. PubMed ID: 23863430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.