BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27790287)

  • 1. Insight into the evolution of the proton concentration during autohydrolysis and dilute-acid hydrolysis of hemicellulose.
    Kapu NS; Yuan Z; Chang XF; Beatson R; Martinez DM; Trajano HL
    Biotechnol Biofuels; 2016; 9():224. PubMed ID: 27790287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green biorefinery - the ultra-high hydrolysis rate and behavior of
    Xu Y; Wang P; Xue S; Kong F; Ren H; Zhai H
    RSC Adv; 2020 May; 10(32):18908-18917. PubMed ID: 35518329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion.
    Moldes AB; Bustos G; Torrado A; Domínguez JM
    Appl Biochem Biotechnol; 2007 Dec; 143(3):244-56. PubMed ID: 18057452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicted effects of mineral neutralization and bisulfate formation on hydrogen ion concentration for dilute sulfuric acid pretreatment.
    Lloyd TA; Wyman CE
    Appl Biochem Biotechnol; 2004; 113-116():1013-22. PubMed ID: 15054249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilute acid and autohydrolysis pretreatment.
    Yang B; Wyman CE
    Methods Mol Biol; 2009; 581():103-14. PubMed ID: 19768619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel population balance model for the dilute acid hydrolysis of hemicellulose.
    Greenwood AA; Farrell TW; Zhang Z; O'Hara IM
    Biotechnol Biofuels; 2015; 8():26. PubMed ID: 25964800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Kinetics Studies on Hydrolysis of Hemicellulose.
    Yuan Q; Liu S; Ma MG; Ji XX; Choi SE; Si C
    Front Chem; 2021; 9():781291. PubMed ID: 34869229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries.
    Godin B; Nagle N; Sattler S; Agneessens R; Delcarte J; Wolfrum E
    Biotechnol Biofuels; 2016; 9():251. PubMed ID: 27895705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the autohydrolysis and ammonia fiber explosion (AFEX) pretreatments on the subsequent enzymatic hydrolysis of coastal Bermuda grass.
    Lee JM; Jameel H; Venditti RA
    Bioresour Technol; 2010 Jul; 101(14):5449-58. PubMed ID: 20223654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover.
    Lu Y; Mosier NS
    Biotechnol Bioeng; 2008 Dec; 101(6):1170-81. PubMed ID: 18781694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autohydrolysis pretreatment of Arundo donax: a comparison between microwave-assisted batch and fast heating rate flow-through reaction systems.
    Galia A; Schiavo B; Antonetti C; Galletti AM; Interrante L; Lessi M; Scialdone O; Valenti MG
    Biotechnol Biofuels; 2015; 8():218. PubMed ID: 26697107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solubilization and structural changes of lignin in naked oat stems during subcritical water autohydrolysis.
    Jiang L; Zhu Y; Wei J; Ren H; Zhai H
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130911. PubMed ID: 38492693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of exogenous ash on the autohydrolysis and enzymatic hydrolysis of wheat straw.
    Wu X; Tang W; Huang C; Huang C; Lai C; Yong Q
    Bioresour Technol; 2019 Aug; 286():121411. PubMed ID: 31078979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining.
    Batalha LA; Han Q; Jameel H; Chang HM; Colodette JL; Borges Gomes FJ
    Bioresour Technol; 2015 Mar; 180():97-105. PubMed ID: 25590426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.
    Li H; Gao X; Demartini JD; Kumar R; Wyman CE
    Biotechnol Bioeng; 2013 Nov; 110(11):2894-901. PubMed ID: 23637060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing dilute acid hydrolysis of hemicellulose in a nitrogen-rich cellulosic material--dairy manure.
    Liao W; Liu Y; Liu C; Chen S
    Bioresour Technol; 2004 Aug; 94(1):33-41. PubMed ID: 15081484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of autohydrolysis of hardwoods.
    Chen X; Lawoko M; Heiningen Av
    Bioresour Technol; 2010 Oct; 101(20):7812-9. PubMed ID: 20541933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass.
    Xiang Q; Lee YY; Torget RW
    Appl Biochem Biotechnol; 2004; 113-116():1127-38. PubMed ID: 15054258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modeling of brewery's spent grain autohydrolysis.
    Carvalheiro F; Garrote G; Parajó JC; Pereira H; Gírio FM
    Biotechnol Prog; 2005; 21(1):233-43. PubMed ID: 15903262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.