BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27790287)

  • 21. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass.
    Yat SC; Berger A; Shonnard DR
    Bioresour Technol; 2008 Jun; 99(9):3855-63. PubMed ID: 17904838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery.
    Ertas M; Han Q; Jameel H
    Bioresour Technol; 2014 Oct; 169():1-8. PubMed ID: 25014168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse.
    Zhao X; Zhou Y; Liu D
    Bioresour Technol; 2012 Feb; 105():160-8. PubMed ID: 22178495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of a depolymerization model for predicting thermochemical hydrolysis of hemicellulose.
    Lloyd T; Wyman CE
    Appl Biochem Biotechnol; 2003; 105 -108():53-67. PubMed ID: 12721475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autohydrolysis pretreatment of coastal Bermuda grass for increased enzyme hydrolysis.
    Lee JM; Shi J; Venditti RA; Jameel H
    Bioresour Technol; 2009 Dec; 100(24):6434-41. PubMed ID: 19665372
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancing enzymatic digestibility of waste wheat straw by presoaking to reduce the ash-influencing effect on autohydrolysis.
    Tang W; Wu X; Huang C; Huang C; Lai C; Yong Q
    Biotechnol Biofuels; 2019; 12():222. PubMed ID: 31534481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification.
    El Hage R; Chrusciel L; Desharnais L; Brosse N
    Bioresour Technol; 2010 Dec; 101(23):9321-9. PubMed ID: 20655207
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars.
    Ertas M; Han Q; Jameel H; Chang HM
    Bioresour Technol; 2014; 152():259-66. PubMed ID: 24300844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: posthydrolysis kinetics.
    Garrote G; Domínguez H; Parajó JC
    Bioresour Technol; 2001 Sep; 79(2):155-64. PubMed ID: 11480924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks.
    Egüés I; Sanchez C; Mondragon I; Labidi J
    Bioresour Technol; 2012 Jan; 103(1):239-48. PubMed ID: 22029960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.
    Liu S
    Biotechnol Adv; 2010; 28(5):563-82. PubMed ID: 20493246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acid hydrolysis of hemicellulose in green liquor pre-pulping extract of mixed northern hardwoods.
    Um BH; van Walsum GP
    Appl Biochem Biotechnol; 2009 May; 153(1-3):127-38. PubMed ID: 19337862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification.
    Romaní A; Garrote G; López F; Parajó JC
    Bioresour Technol; 2011 May; 102(10):5896-904. PubMed ID: 21392966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.
    Chen L; Zhang H; Li J; Lu M; Guo X; Han L
    Bioresour Technol; 2015 Feb; 177():8-16. PubMed ID: 25479388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.
    Bhagia S; Li H; Gao X; Kumar R; Wyman CE
    Biotechnol Biofuels; 2016; 9():245. PubMed ID: 27833657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass.
    Bower S; Wickramasinghe R; Nagle NJ; Schell DJ
    Bioresour Technol; 2008 Oct; 99(15):7354-62. PubMed ID: 17616458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unrevealing model compounds of soil conditioners impacts on the wheat straw autohydrolysis efficiency and enzymatic hydrolysis.
    Wu X; Tang W; Huang C; Huang C; Lai C; Yong Q
    Biotechnol Biofuels; 2020; 13():122. PubMed ID: 32684975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes.
    Jacobsen SE; Wyman CE
    Appl Biochem Biotechnol; 2000; 84-86():81-96. PubMed ID: 10849781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars.
    Jiang L; Wu N; Zheng A; Zhao Z; He F; Li H
    Biotechnol Biofuels; 2016; 9(1):196. PubMed ID: 27651831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues.
    Marcotullio G; Krisanti E; Giuntoli J; de Jong W
    Bioresour Technol; 2011 May; 102(10):5917-23. PubMed ID: 21421304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.