These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27790370)

  • 1. Tissue-engineered 3D cancer-in-bone modeling: silk and PUR protocols.
    Dadwal U; Falank C; Fairfield H; Linehan S; Rosen CJ; Kaplan DL; Sterling J; Reagan MR
    Bonekey Rep; 2016; 5():842. PubMed ID: 27790370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling multiple myeloma-bone marrow interactions and response to drugs in a 3D surrogate microenvironment.
    Belloni D; Heltai S; Ponzoni M; Villa A; Vergani B; Pecciarini L; Marcatti M; Girlanda S; Tonon G; Ciceri F; Caligaris-Cappio F; Ferrarini M; Ferrero E
    Haematologica; 2018 Apr; 103(4):707-716. PubMed ID: 29326121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in Bone Metastasis Modeling.
    Laranga R; Duchi S; Ibrahim T; Guerrieri AN; Donati DM; Lucarelli E
    Cancers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3d Tissue Engineered In Vitro Models Of Cancer In Bone.
    Sitarski AM; Fairfield H; Falank C; Reagan MR
    ACS Biomater Sci Eng; 2018 Feb; 4(2):324-336. PubMed ID: 29756030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells.
    Herroon MK; Diedrich JD; Podgorski I
    Front Endocrinol (Lausanne); 2016; 7():84. PubMed ID: 27458427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium phosphate scaffolds with defined interconnecting channel structure provide a mimetic 3D niche for bone marrow metastasized tumor cell growth.
    Aveic S; Davtalab R; Vogt M; Weber M; Buttler P; Tonini GP; Fischer H
    Acta Biomater; 2019 Apr; 88():527-539. PubMed ID: 30797105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.
    Fitzgerald KA; Guo J; Tierney EG; Curtin CM; Malhotra M; Darcy R; O'Brien FJ; O'Driscoll CM
    Biomaterials; 2015 Oct; 66():53-66. PubMed ID: 26196533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?
    Hoarau-Véchot J; Rafii A; Touboul C; Pasquier J
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29346265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D bone models to study the complex physical and cellular interactions between tumor and the bone microenvironment.
    Vanderburgh JP; Guelcher SA; Sterling JA
    J Cell Biochem; 2018 Jul; 119(7):5053-5059. PubMed ID: 29600556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Dynamic Culture Models of Multiple Myeloma.
    Ferrarini M; Steimberg N; Boniotti J; Berenzi A; Belloni D; Mazzoleni G; Ferrero E
    Methods Mol Biol; 2017; 1612():177-190. PubMed ID: 28634943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection.
    Bhowmick R; Derakhshan T; Liang Y; Ritchey J; Liu L; Gappa-Fahlenkamp H
    Tissue Eng Part A; 2018 Oct; 24(19-20):1468-1480. PubMed ID: 29732955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D multicellular models to study the regulation and roles of acid-base transporters in breast cancer.
    Czaplinska D; Elingaard-Larsen LO; Rolver MG; Severin M; Pedersen SF
    Biochem Soc Trans; 2019 Dec; 47(6):1689-1700. PubMed ID: 31803922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Advances in the Study of Bone Tumors: A Lesson From the 3D Environment.
    Cortini M; Baldini N; Avnet S
    Front Physiol; 2019; 10():814. PubMed ID: 31316395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex Vivo Models Simulating the Bone Marrow Environment and Predicting Response to Therapy in Multiple Myeloma.
    Papadimitriou K; Kostopoulos IV; Tsopanidou A; Orologas-Stavrou N; Kastritis E; Tsitsilonis O; Dimopoulos MA; Terpos E
    Cancers (Basel); 2020 Jul; 12(8):. PubMed ID: 32707884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro 3D Cultures to Reproduce the Bone Marrow Niche.
    Ham J; Lever L; Fox M; Reagan MR
    JBMR Plus; 2019 Oct; 3(10):e10228. PubMed ID: 31687654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heralding a new paradigm in 3D tumor modeling.
    Fong EL; Harrington DA; Farach-Carson MC; Yu H
    Biomaterials; 2016 Nov; 108():197-213. PubMed ID: 27639438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the breast cancer bone metastatic niche in complex three-dimensional cocultures.
    Marlow R; Dontu G
    Methods Mol Biol; 2015; 1293():213-20. PubMed ID: 26040690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile 3D tissue matrix scaffold system for tumor modeling and drug screening.
    Rijal G; Li W
    Sci Adv; 2017 Sep; 3(9):e1700764. PubMed ID: 28924608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.