These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 27790774)
1. The effect of longitudinal chromatic aberration on the lag of accommodation and depth of field. Jaskulski M; Marín-Franch I; Bernal-Molina P; López-Gil N Ophthalmic Physiol Opt; 2016 Nov; 36(6):657-663. PubMed ID: 27790774 [TBL] [Abstract][Full Text] [Related]
2. Depth-of-field of the accommodating eye. Bernal-Molina P; Montés-Micó R; Legras R; López-Gil N Optom Vis Sci; 2014 Oct; 91(10):1208-14. PubMed ID: 25148219 [TBL] [Abstract][Full Text] [Related]
3. The role of luminance and chromatic cues in emmetropisation. Rucker FJ Ophthalmic Physiol Opt; 2013 May; 33(3):196-214. PubMed ID: 23662955 [TBL] [Abstract][Full Text] [Related]
4. Accommodation to monochromatic and white-light targets. Aggarwala KR; Nowbotsing S; Kruger PB Invest Ophthalmol Vis Sci; 1995 Dec; 36(13):2695-705. PubMed ID: 7499092 [TBL] [Abstract][Full Text] [Related]
5. Blur Detection, Depth of Field, and Accommodation in Emmetropic and Hyperopic Children. Roberts TL; Stevenson SB; Benoit JS; Manny RE; Anderson HA Optom Vis Sci; 2018 Mar; 95(3):212-222. PubMed ID: 29401180 [TBL] [Abstract][Full Text] [Related]
6. Human eyes do not need monochromatic aberrations for dynamic accommodation. Bernal-Molina P; Marín-Franch I; Del Águila-Carrasco AJ; Esteve-Taboada JJ; López-Gil N; Kruger PB; Montés-Micó R Ophthalmic Physiol Opt; 2017 Sep; 37(5):602-609. PubMed ID: 28681436 [TBL] [Abstract][Full Text] [Related]
7. Stimuli for accommodation: blur, chromatic aberration and size. Kruger PB; Pola J Vision Res; 1986; 26(6):957-71. PubMed ID: 3750878 [TBL] [Abstract][Full Text] [Related]
8. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration. Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959 [TBL] [Abstract][Full Text] [Related]
9. Accommodation and chromatic aberration: effect of spatial frequency. Stone D; Mathews S; Kruger PB Ophthalmic Physiol Opt; 1993 Jul; 13(3):244-52. PubMed ID: 8265165 [TBL] [Abstract][Full Text] [Related]
10. Detection of the depth order of defocused images. Nguyen VA; Howard IP; Allison RS Vision Res; 2005 Apr; 45(8):1003-11. PubMed ID: 15695185 [TBL] [Abstract][Full Text] [Related]
11. Impact of higher-order aberrations on depth-of-field. Zapata-Díaz JF; Marín-Franch I; Radhakrishnan H; López-Gil N J Vis; 2018 Nov; 18(12):5. PubMed ID: 30458513 [TBL] [Abstract][Full Text] [Related]
12. Accommodation to simulations of defocus and chromatic aberration in the presence of chromatic misalignment. Stark LR; Lee RS; Kruger PB; Rucker FJ; Ying Fan H Vision Res; 2002 Jun; 42(12):1485-98. PubMed ID: 12074944 [TBL] [Abstract][Full Text] [Related]
13. Role of ocular aberrations in dynamic accommodation control. Chin SS; Hampson KM; Mallen E Clin Exp Optom; 2009 May; 92(3):227-37. PubMed ID: 19462504 [TBL] [Abstract][Full Text] [Related]
14. Red-green opponent channel mediation of control of human ocular accommodation. Kotulak JC; Morse SE; Billock VA J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):697-703. PubMed ID: 7738858 [TBL] [Abstract][Full Text] [Related]
15. Dioptric and non-dioptric stimuli for accommodation: target size alone and with blur and chromatic aberration. Kruger PB; Pola J Vision Res; 1987; 27(4):555-67. PubMed ID: 3660618 [TBL] [Abstract][Full Text] [Related]
16. Effects of longitudinal chromatic aberration on accommodation and emmetropization. Seidemann A; Schaeffel F Vision Res; 2002 Sep; 42(21):2409-17. PubMed ID: 12367740 [TBL] [Abstract][Full Text] [Related]
17. Effect of apparent depth cues on accommodation in a Badal optometer. Otero C; Aldaba M; Martínez-Navarro B; Pujol J Clin Exp Optom; 2017 Nov; 100(6):649-655. PubMed ID: 28326607 [TBL] [Abstract][Full Text] [Related]