These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27791022)

  • 1. Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens.
    Gerotto C; Alboresi A; Meneghesso A; Jokel M; Suorsa M; Aro EM; Morosinotto T
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12322-12327. PubMed ID: 27791022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cyclic and pseudo-cyclic electron transport in response to dynamic light changes in Physcomitrella patens.
    Storti M; Alboresi A; Gerotto C; Aro EM; Finazzi G; Morosinotto T
    Plant Cell Environ; 2019 May; 42(5):1590-1602. PubMed ID: 30496624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chloroplast NADH dehydrogenase-like complex influences the photosynthetic activity of the moss Physcomitrella patens.
    Storti M; Puggioni MP; Segalla A; Morosinotto T; Alboresi A
    J Exp Bot; 2020 Sep; 71(18):5538-5548. PubMed ID: 32497206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution.
    Alboresi A; Storti M; Morosinotto T
    New Phytol; 2019 Jan; 221(1):105-109. PubMed ID: 30084195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of electron transport is essential for photosystem I stability and plant growth.
    Storti M; Segalla A; Mellon M; Alboresi A; Morosinotto T
    New Phytol; 2020 Nov; 228(4):1316-1326. PubMed ID: 32367526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis.
    Yamamoto H; Takahashi S; Badger MR; Shikanai T
    Nat Plants; 2016 Feb; 2():16012. PubMed ID: 27249347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PGR5-Dependent Cyclic Electron Flow Protects Photosystem I under Fluctuating Light at Donor and Acceptor Sides.
    Yamamoto H; Shikanai T
    Plant Physiol; 2019 Feb; 179(2):588-600. PubMed ID: 30464024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavodiiron Protein Substitutes for Cyclic Electron Flow without Competing CO
    Wada S; Yamamoto H; Suzuki Y; Yamori W; Shikanai T; Makino A
    Plant Physiol; 2018 Feb; 176(2):1509-1518. PubMed ID: 29242378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts.
    Shikanai T; Yamamoto H
    Mol Plant; 2017 Jan; 10(1):20-29. PubMed ID: 27575692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role and regulation of class-C flavodiiron proteins in photosynthetic organisms.
    Alboresi A; Storti M; Cendron L; Morosinotto T
    Biochem J; 2019 Sep; 476(17):2487-2498. PubMed ID: 31519856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Liverwort,
    Shimakawa G; Ishizaki K; Tsukamoto S; Tanaka M; Sejima T; Miyake C
    Plant Physiol; 2017 Mar; 173(3):1636-1647. PubMed ID: 28153920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization.
    Alboresi A; Gerotto C; Giacometti GM; Bassi R; Morosinotto T
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11128-33. PubMed ID: 20505121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic regulation in response to fluctuating light conditions under temperature stress in three mosses with different light requirements.
    Lei YB; Xia HX; Chen K; Plenković-Moraj A; Huang W; Sun G
    Plant Sci; 2021 Oct; 311():111020. PubMed ID: 34482921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants.
    Iwai M; Yokono M
    Curr Opin Plant Biol; 2017 Jun; 37():94-101. PubMed ID: 28445834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physcomitrella patens and Ceratodon purpureus, mosses as model organisms in photosynthesis studies.
    Thornton LE; Keren N; Ohad I; Pakrasi HB
    Photosynth Res; 2005; 83(1):87-96. PubMed ID: 16143910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coexistence of plant and algal energy dissipation mechanisms in the moss Physcomitrella patens.
    Gerotto C; Alboresi A; Giacometti GM; Bassi R; Morosinotto T
    New Phytol; 2012 Nov; 196(3):763-773. PubMed ID: 23005032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative outlets for sustaining photosynthetic electron transport during dark-to-light transitions.
    Saroussi S; Karns DAJ; Thomas DC; Bloszies C; Fiehn O; Posewitz MC; Grossman AR
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11518-11527. PubMed ID: 31101712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-harvesting complex stress-related proteins play crucial roles in the acclimation of Physcomitrella patens under fluctuating light conditions.
    Gao S; Pinnola A; Zhou L; Zheng Z; Li Z; Bassi R; Wang G
    Photosynth Res; 2022 Jan; 151(1):1-10. PubMed ID: 34468919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative Proteomic Analysis of Wild-Type
    Luo W; Komatsu S; Abe T; Matsuura H; Takahashi K
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32093080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Land plants drive photorespiration as higher electron-sink: comparative study of post-illumination transient O
    Hanawa H; Ishizaki K; Nohira K; Takagi D; Shimakawa G; Sejima T; Shaku K; Makino A; Miyake C
    Physiol Plant; 2017 Sep; 161(1):138-149. PubMed ID: 28419460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.