BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 27791052)

  • 1. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.
    Fang H; Zhao J; Yu KJ; Song E; Farimani AB; Chiang CH; Jin X; Xue Y; Xu D; Du W; Seo KJ; Zhong Y; Yang Z; Won SM; Fang G; Choi SW; Chaudhuri S; Huang Y; Alam MA; Viventi J; Aluru NR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11682-11687. PubMed ID: 27791052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin, Transferred Layers of Metal Silicide as Faradaic Electrical Interfaces and Biofluid Barriers for Flexible Bioelectronic Implants.
    Li J; Li R; Du H; Zhong Y; Chen Y; Nan K; Won SM; Zhang J; Huang Y; Rogers JA
    ACS Nano; 2019 Jan; 13(1):660-670. PubMed ID: 30608642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems.
    Song E; Li R; Jin X; Du H; Huang Y; Zhang J; Xia Y; Fang H; Lee YK; Yu KJ; Chang JK; Mei Y; Alam MA; Huang Y; Rogers JA
    ACS Nano; 2018 Oct; 12(10):10317-10326. PubMed ID: 30281278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as Biofluid Barriers in Flexible Electronic Systems.
    Lee YK; Yu KJ; Kim Y; Yoon Y; Xie Z; Song E; Luan H; Feng X; Huang Y; Rogers JA
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42633-42638. PubMed ID: 29178781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.
    Li J; Song E; Chiang CH; Yu KJ; Koo J; Du H; Zhong Y; Hill M; Wang C; Zhang J; Chen Y; Tian L; Zhong Y; Fang G; Viventi J; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9542-E9549. PubMed ID: 30228119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Materials and Devices for Bioresorbable Electronics.
    Kang SK; Koo J; Lee YK; Rogers JA
    Acc Chem Res; 2018 May; 51(5):988-998. PubMed ID: 29664613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials and processing approaches for foundry-compatible transient electronics.
    Chang JK; Fang H; Bower CA; Song E; Yu X; Rogers JA
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):E5522-E5529. PubMed ID: 28652373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin, Transferred Layers of Silicon Oxynitrides as Tunable Biofluid Barriers for Bioresorbable Electronic Systems.
    Hu Z; Zhao J; Guo H; Li R; Wu M; Shen J; Wang Y; Qiao Z; Xu Y; Haugstad G; An D; Xie Z; Kandela I; Nandoliya KR; Chen Y; Yu Y; Yuan Q; Hou J; Deng Y; AlDubayan AH; Yang Q; Zeng L; Lu D; Koo J; Bai W; Song E; Yao S; Wolverton C; Huang Y; Rogers JA
    Adv Mater; 2024 Apr; 36(15):e2307782. PubMed ID: 38303684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration.
    Song E; Chiang CH; Li R; Jin X; Zhao J; Hill M; Xia Y; Li L; Huang Y; Won SM; Yu KJ; Sheng X; Fang H; Alam MA; Huang Y; Viventi J; Chang JK; Rogers JA
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15398-15406. PubMed ID: 31308234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Materials and Interface Designs of Waterproof Field-Effect Transistor Arrays for Detection of Neurological Biomarkers.
    Dong Y; Chen S; Liu TL; Li J
    Small; 2022 Mar; 18(11):e2106866. PubMed ID: 35023615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics.
    Lee YK; Yu KJ; Song E; Barati Farimani A; Vitale F; Xie Z; Yoon Y; Kim Y; Richardson A; Luan H; Wu Y; Xie X; Lucas TH; Crawford K; Mei Y; Feng X; Huang Y; Litt B; Aluru NR; Yin L; Rogers JA
    ACS Nano; 2017 Dec; 11(12):12562-12572. PubMed ID: 29178798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxide films at the nanoscale: new structures, new functions, and new materials.
    Giordano L; Pacchioni G
    Acc Chem Res; 2011 Nov; 44(11):1244-52. PubMed ID: 21805966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide bandgap semiconductor nanomembranes as a long-term biointerface for flexible, implanted neuromodulator.
    Nguyen TK; Barton M; Ashok A; Truong TA; Yadav S; Leitch M; Nguyen TV; Kashaninejad N; Dinh T; Hold L; Yamauchi Y; Nguyen NT; Phan HP
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2203287119. PubMed ID: 35939711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin Crystalline Silicon Nano and Micro Membranes with High Areal Density for Low-Cost Flexible Electronics.
    Lee JY; Shin J; Kim K; Ju JE; Dutta A; Kim TS; Cho YU; Kim T; Hu L; Min WK; Jung HS; Park YS; Won SM; Yeo WH; Moon J; Khang DY; Kim HJ; Ahn JH; Cheng H; Yu KJ; Rogers JA
    Small; 2023 Sep; 19(39):e2302597. PubMed ID: 37246255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer printing of thermoreversible ion gels for flexible electronics.
    Lee KH; Zhang S; Gu Y; Lodge TP; Frisbie CD
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9522-7. PubMed ID: 24028461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers.
    Elender G; Kühner M; Sackmann E
    Biosens Bioelectron; 1996; 11(6-7):565-77. PubMed ID: 8652110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Lived, Transferred Crystalline Silicon Carbide Nanomembranes for Implantable Flexible Electronics.
    Phan HP; Zhong Y; Nguyen TK; Park Y; Dinh T; Song E; Vadivelu RK; Masud MK; Li J; Shiddiky MJA; Dao D; Yamauchi Y; Rogers JA; Nguyen NT
    ACS Nano; 2019 Oct; 13(10):11572-11581. PubMed ID: 31433939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers.
    Simmons JM; Nichols BM; Marcus MS; Castellini OM; Hamers RJ; Eriksson MA
    Small; 2006 Jul; 2(7):902-9. PubMed ID: 17193143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers.
    Hwang GT; Im D; Lee SE; Lee J; Koo M; Park SY; Kim S; Yang K; Kim SJ; Lee K; Lee KJ
    ACS Nano; 2013 May; 7(5):4545-53. PubMed ID: 23617401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow-Directed Crystallization for Printed Electronics.
    Qu G; Kwok JJ; Diao Y
    Acc Chem Res; 2016 Dec; 49(12):2756-2764. PubMed ID: 27993010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.