These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27791073)

  • 21. Lysosomotropic agents: impact on lysosomal membrane permeabilization and cell death.
    Villamil Giraldo AM; Appelqvist H; Ederth T; Öllinger K
    Biochem Soc Trans; 2014 Oct; 42(5):1460-4. PubMed ID: 25233432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graphene-Induced Pore Formation on Cell Membranes.
    Duan G; Zhang Y; Luan B; Weber JK; Zhou RW; Yang Z; Zhao L; Xu J; Luo J; Zhou R
    Sci Rep; 2017 Feb; 7():42767. PubMed ID: 28218295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions of the Lysosomotropic Detergent O-Methyl-Serine Dodecylamide Hydrochloride (MSDH) with Lipid Bilayer Membranes-Implications for Cell Toxicity.
    Villamil Giraldo AM; Eriksson I; Wennmalm S; Fyrner T; Ederth T; Öllinger K
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32365555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes.
    Lacerda L; Ali-Boucetta H; Kraszewski S; Tarek M; Prato M; Ramseyer C; Kostarelos K; Bianco A
    Nanoscale; 2013 Nov; 5(21):10242-50. PubMed ID: 24056765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping.
    Yang Y; Li X; Jiang J; Du H; Zhao L; Zhao Y
    ACS Nano; 2010 Oct; 4(10):5755-62. PubMed ID: 20919730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation.
    Shi X; von dem Bussche A; Hurt RH; Kane AB; Gao H
    Nat Nanotechnol; 2011 Sep; 6(11):714-9. PubMed ID: 21926979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Embedded carbon nanotubes nanoparticles in plasma membrane induce cellular calcium outflow imbalancing.
    Wang J; Liu R; Su Y; Li W
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4058-65. PubMed ID: 24738351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer.
    Guo Y; Werner M; Seemann R; Baulin VA; Fleury JB
    ACS Nano; 2018 Dec; 12(12):12042-12049. PubMed ID: 30452223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-dimensional protein-based nanoparticles induce lipid bilayer disruption: carbon nanotube conjugates and amyloid fibrils.
    Hirano A; Uda K; Maeda Y; Akasaka T; Shiraki K
    Langmuir; 2010 Nov; 26(22):17256-9. PubMed ID: 20964299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes.
    Simon-Deckers A; Gouget B; Mayne-L'hermite M; Herlin-Boime N; Reynaud C; Carrière M
    Toxicology; 2008 Nov; 253(1-3):137-46. PubMed ID: 18835419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons.
    Luo CL; Chen XP; Li LL; Li QQ; Li BX; Xue AM; Xu HF; Dai DK; Shen YW; Tao LY; Zhao ZQ
    J Neurotrauma; 2013 Apr; 30(7):597-607. PubMed ID: 23186154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure--activity relationship analysis.
    Liu J; Hopfinger AJ
    Chem Res Toxicol; 2008 Feb; 21(2):459-66. PubMed ID: 18189365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polystyrene-modified carbon nanotubes: Promising carriers in targeted drug delivery.
    Gul G; Faller R; Ileri-Ercan N
    Biophys J; 2022 Nov; 121(22):4271-4279. PubMed ID: 36230001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesized Aβ42 Caused Intracellular Oxidative Damage, Leading to Cell Death, via Lysosome Rupture.
    Oku Y; Murakami K; Irie K; Hoseki J; Sakai Y
    Cell Struct Funct; 2017 May; 42(1):71-79. PubMed ID: 28413178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controlling water flow inside carbon nanotube with lipid membranes.
    Feng JW; Ding HM; Ma YQ
    J Chem Phys; 2014 Sep; 141(9):094901. PubMed ID: 25194388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA fragment translocation through the lipid membrane assisted by carbon nanotube.
    Liang L; Zhang Y; Kong Z; Liu F; Shen JW; He Z; Wang H
    Int J Pharm; 2020 Jan; 574():118921. PubMed ID: 31812796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systematic investigation of intracellular trafficking behavior of one-dimensional alumina nanotubes.
    Sun X; Jiang L; Wang C; Sun S; Mei L; Huang L
    J Mater Chem B; 2019 Mar; 7(12):2043-2053. PubMed ID: 32254808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Can a carbon nanotube pierce through a phospholipid bilayer?
    Pogodin S; Baulin VA
    ACS Nano; 2010 Sep; 4(9):5293-300. PubMed ID: 20809585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing nanomechanical responses of cell membranes.
    Kim J
    Sci Rep; 2020 Feb; 10(1):2301. PubMed ID: 32041981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.