These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27791096)

  • 41. Identification and characterization of a novel competence gene, comC, required for DNA binding and uptake in Acinetobacter sp. strain BD413.
    Link C; Eickernjäger S; Porstendörfer D; Averhoff B
    J Bacteriol; 1998 Mar; 180(6):1592-5. PubMed ID: 9515934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae.
    Salgado-Pabón W; Jain S; Turner N; van der Does C; Dillard JP
    Mol Microbiol; 2007 Nov; 66(4):930-47. PubMed ID: 17927698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pseudomonas stutzeri has two closely related pilA genes (Type IV pilus structural protein) with opposite influences on natural genetic transformation.
    Graupner S; Wackernagel W
    J Bacteriol; 2001 Apr; 183(7):2359-66. PubMed ID: 11244078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of gonococcal piliation by regulatable transcription of pilE.
    Long CD; Hayes SF; van Putten JP; Harvey HA; Apicella MA; Seifert HS
    J Bacteriol; 2001 Mar; 183(5):1600-9. PubMed ID: 11160091
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The molecular basis of FimT-mediated DNA uptake during bacterial natural transformation.
    Braus SAG; Short FL; Holz S; Stedman MJM; Gossert AD; Hospenthal MK
    Nat Commun; 2022 Mar; 13(1):1065. PubMed ID: 35246533
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cj0011c, a periplasmic single- and double-stranded DNA-binding protein, contributes to natural transformation in Campylobacter jejuni.
    Jeon B; Zhang Q
    J Bacteriol; 2007 Oct; 189(20):7399-407. PubMed ID: 17693521
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pilus chaperones represent a new type of protein-folding catalyst.
    Vetsch M; Puorger C; Spirig T; Grauschopf U; Weber-Ban EU; Glockshuber R
    Nature; 2004 Sep; 431(7006):329-33. PubMed ID: 15372038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial translocation motors investigated by single molecule techniques.
    Allemand JF; Maier B
    FEMS Microbiol Rev; 2009 May; 33(3):593-610. PubMed ID: 19243443
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chaperone-assisted assembly and molecular architecture of adhesive pili.
    Hultgren SJ; Normark S; Abraham SN
    Annu Rev Microbiol; 1991; 45():383-415. PubMed ID: 1683764
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using laser tweezers to measure twitching motility in Neisseria.
    Maier B
    Curr Opin Microbiol; 2005 Jun; 8(3):344-9. PubMed ID: 15939360
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells.
    Seitz P; Pezeshgi Modarres H; Borgeaud S; Bulushev RD; Steinbock LJ; Radenovic A; Dal Peraro M; Blokesch M
    PLoS Genet; 2014 Jan; 10(1):e1004066. PubMed ID: 24391524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae.
    Winther-Larsen HC; Wolfgang M; Dunham S; van Putten JP; Dorward D; Løvold C; Aas FE; Koomey M
    Mol Microbiol; 2005 May; 56(4):903-17. PubMed ID: 15853879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the Neisseria gonorrhoeae Iron and Fur Regulatory Network.
    Yu C; McClure R; Nudel K; Daou N; Genco CA
    J Bacteriol; 2016 Aug; 198(16):2180-91. PubMed ID: 27246574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The PilC adhesin of the Neisseria type IV pilus-binding specificities and new insights into the nature of the host cell receptor.
    Kirchner M; Meyer TF
    Mol Microbiol; 2005 May; 56(4):945-57. PubMed ID: 15853882
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specificity of DNA uptake in genetic transformation of gonococci.
    Dougherty TJ; Asmus A; Tomasz A
    Biochem Biophys Res Commun; 1979 Jan; 86(1):97-104. PubMed ID: 107953
    [No Abstract]   [Full Text] [Related]  

  • 56. Uptake and processing of DNA by Acinetobacter calcoaceticus--a review.
    Palmen R; Hellingwerf KJ
    Gene; 1997 Jun; 192(1):179-90. PubMed ID: 9224889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Analysis of the Piv recombinase-related gene family of Neisseria gonorrhoeae.
    Skaar EP; Lecuyer B; Lenich AG; Lazio MP; Perkins-Balding D; Seifert HS; Karls AC
    J Bacteriol; 2005 Feb; 187(4):1276-86. PubMed ID: 15687191
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the multiple transferable resistance repressor, MtrR, from Neisseria gonorrhoeae.
    Hoffmann KM; Williams D; Shafer WM; Brennan RG
    J Bacteriol; 2005 Jul; 187(14):5008-12. PubMed ID: 15995218
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus.
    Soto GE; Dodson KW; Ogg D; Liu C; Heuser J; Knight S; Kihlberg J; Jones CH; Hultgren SJ
    EMBO J; 1998 Nov; 17(21):6155-67. PubMed ID: 9799225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Haemophilus influenzae and Neisseria gonorrhoeae recognize different specificity determinants in the DNA uptake step of genetic transformation.
    Mathis LS; Scocca JJ
    J Gen Microbiol; 1982 May; 128(5):1159-61. PubMed ID: 6809888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.