These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27791474)

  • 21. Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation.
    Eddouaouda K; Mnif S; Badis A; Younes SB; Cherif S; Ferhat S; Mhiri N; Chamkha M; Sayadi S
    J Basic Microbiol; 2012 Aug; 52(4):408-18. PubMed ID: 22052657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater.
    Nitschke M; Pastore GM
    Bioresour Technol; 2006 Jan; 97(2):336-41. PubMed ID: 16171690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of surfactin produced by Bacillus subtilis isolate BS5.
    Abdel-Mawgoud AM; Aboulwafa MM; Hassouna NA
    Appl Biochem Biotechnol; 2008 Sep; 150(3):289-303. PubMed ID: 18437297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purification and characterization of biosurfactant produced by Bacillus licheniformis Y-1 and its application in remediation of petroleum contaminated soil.
    Liu B; Liu J; Ju M; Li X; Yu Q
    Mar Pollut Bull; 2016 Jun; 107(1):46-51. PubMed ID: 27114088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.
    Amin GA
    Water Sci Technol; 2014; 70(2):234-40. PubMed ID: 25051469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain.
    Fonseca RR; Silva AJ; De França FP; Cardoso VL; Sérvulo EF
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):471-86. PubMed ID: 18478410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation and toxicity to fish of di-long-chain tertiary amine salt containing ester and amide bonds.
    Toshima Y; Katoh T; Nishiyama N; Tsugukuni T; Saito F
    Ecotoxicol Environ Saf; 1994 Oct; 29(1):113-21. PubMed ID: 7529158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source.
    Sousa M; Melo VM; Rodrigues S; Sant'ana HB; Gonçalves LR
    Bioprocess Biosyst Eng; 2012 Aug; 35(6):897-906. PubMed ID: 22218992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of Biosurfactants by
    Silva MA; Silva AF; Rufino RD; Luna JM; Santos VA; Sarubbo LA
    Water Environ Res; 2017 Feb; 89(2):117-126. PubMed ID: 27196308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute toxicity of alkylpolyglucosides to Vibrio fischeri, Daphnia magna and microalgae: a comparative study.
    Jurado E; Fernández-Serrano M; Núñez Olea J; Lechuga M; Jiménez JL; Ríos F
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):290-5. PubMed ID: 22127434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633.
    Dehghan-Noude G; Housaindokht M; Bazzaz BS
    J Microbiol; 2005 Jun; 43(3):272-6. PubMed ID: 15995646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696).
    Ghojavand H; Vahabzadeh F; Roayaei E; Shahraki AK
    J Colloid Interface Sci; 2008 Aug; 324(1-2):172-6. PubMed ID: 18513733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Biosurfactant Production by
    Bouassida M; Ghazala I; Ellouze-Chaabouni S; Ghribi D
    J Microbiol Biotechnol; 2018 Jan; 28(1):95-104. PubMed ID: 28750507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosurfactant production by Bacillus subtilis SL and its potential for enhanced oil recovery in low permeability reservoirs.
    Wu B; Xiu J; Yu L; Huang L; Yi L; Ma Y
    Sci Rep; 2022 May; 12(1):7785. PubMed ID: 35546349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced hydrocarbon biodegradation by a newly isolated Bacillus subtilis strain.
    Christova N; Tuleva B; Nikolova-Damyanova B
    Z Naturforsch C J Biosci; 2004; 59(3-4):205-8. PubMed ID: 15241927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.
    Mnif I; Mnif S; Sahnoun R; Maktouf S; Ayedi Y; Ellouze-Chaabouni S; Ghribi D
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):14852-61. PubMed ID: 25994261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.
    Kim PI; Ryu J; Kim YH; Chi YT
    J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of microbial surfactants from oily sludge-contaminated soil by Bacillus subtilis DSVP23.
    Pemmaraju SC; Sharma D; Singh N; Panwar R; Cameotra SS; Pruthi V
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1119-31. PubMed ID: 22391691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fate and effects of amphoteric surfactants in the aquatic environment.
    Garcia MT; Campos E; Marsal A; Ribosa I
    Environ Int; 2008 Oct; 34(7):1001-5. PubMed ID: 18456334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome annotation and comparative genomic analysis of Bacillus subtilis MJ01, a new bio-degradation strain isolated from oil-contaminated soil.
    Rahimi T; Niazi A; Deihimi T; Taghavi SM; Ayatollahi S; Ebrahimie E
    Funct Integr Genomics; 2018 Sep; 18(5):533-543. PubMed ID: 29730772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.