These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 2779181)
1. Flow in a two-dimensional collapsible channel with rigid inlet and outlet. Matsuzaki Y; Matsumoto T J Biomech Eng; 1989 Aug; 111(3):180-4. PubMed ID: 2779181 [TBL] [Abstract][Full Text] [Related]
2. Wave motions in a collapsible tube conveying fluid. Matsuzaki Y; Matsumoto T Monogr Atheroscler; 1990; 15():138-49. PubMed ID: 2296240 [TBL] [Abstract][Full Text] [Related]
3. Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow. Pedley TJ J Biomech Eng; 1992 Feb; 114(1):60-7. PubMed ID: 1491588 [TBL] [Abstract][Full Text] [Related]
4. Analysis of flow in a two-dimensional collapsible channel using universal "tube" law. Matsuzaki Y; Ikeda T; Kitagawa T; Sakata S J Biomech Eng; 1994 Nov; 116(4):469-76. PubMed ID: 7869723 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional flows in a hyperelastic vessel under external pressure. Zhang S; Luo X; Cai Z Biomech Model Mechanobiol; 2018 Aug; 17(4):1187-1207. PubMed ID: 29744606 [TBL] [Abstract][Full Text] [Related]
6. Numerical analysis for stability and self-excited oscillation in collapsible tube flow. Hayashi S; Hayase T; Kawamura H J Biomech Eng; 1998 Aug; 120(4):468-75. PubMed ID: 10412417 [TBL] [Abstract][Full Text] [Related]
7. A one-dimensional unsteady separable and reattachable flow model for collapsible tube-flow analysis. Ikeda T; Matsuzaki Y J Biomech Eng; 1999 Apr; 121(2):153-9. PubMed ID: 10211448 [TBL] [Abstract][Full Text] [Related]
8. Physical principles governing the interrelationships of pressure, flow and volume in collapsible tubes. Chiles C; Ravin CE Invest Radiol; 1981; 16(6):525-7. PubMed ID: 7319761 [TBL] [Abstract][Full Text] [Related]
9. Experiments on steady and oscillatory flows at moderate Reynolds numbers in a quasi-two-dimensional channel with a throat. Matsuzaki Y; Ikeda T; Matsumoto T; Kitagawa T J Biomech Eng; 1998 Oct; 120(5):594-601. PubMed ID: 10412436 [TBL] [Abstract][Full Text] [Related]
10. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
11. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels. Tang C; Zhu L; Akingba G; Lu XY J Biomech; 2015 Jul; 48(10):1922-9. PubMed ID: 25911249 [TBL] [Abstract][Full Text] [Related]
13. One-dimensional computer analysis of oscillatory flow in rigid tubes. Donovan FM; Taylor BC; Su MC J Biomech Eng; 1991 Nov; 113(4):476-84. PubMed ID: 1762446 [TBL] [Abstract][Full Text] [Related]
14. A finite-element simulation of pulsatile flow in flexible obstructed tubes. Rooz E; Young DF; Rogge TR J Biomech Eng; 1982 May; 104(2):119-24. PubMed ID: 7078125 [TBL] [Abstract][Full Text] [Related]
15. Numerical analysis of the three-dimensional blood flow in the korean artificial heart. Shim EB; Yeo JY; Ko HJ; Youn CH; Lee YR; Park CY; Min BG; Sun K Artif Organs; 2003 Jan; 27(1):49-60. PubMed ID: 12534713 [TBL] [Abstract][Full Text] [Related]
18. Numerical simulation of steady flow in a model of the aortic bifurcation. Thiriet M; Pares C; Saltel E; Hecht F J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585 [TBL] [Abstract][Full Text] [Related]
19. Analysis of flow parameters of a Newtonian fluid through a cylindrical collapsible tube. Kanyiri CW; Kinyanjui M; Giterere K Springerplus; 2014; 3():566. PubMed ID: 25332866 [TBL] [Abstract][Full Text] [Related]
20. A perturbation model for the oscillatory flow of a Bingham plastic in rigid and periodically displaced tubes. De Chant LJ J Biomech Eng; 1999 Oct; 121(5):502-4. PubMed ID: 10529917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]