These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2779182)

  • 1. Oscillations in a collapsed-tube analog of the brachial artery under a sphygmomanometer cuff.
    Bertram CD; Raymond CJ; Butcher KS
    J Biomech Eng; 1989 Aug; 111(3):185-91. PubMed ID: 2779182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of pulsatile upstream forcing with flow-induced oscillations of a collapsed tube: mode-locking.
    Bertram CD; Sheppeard MD
    Med Eng Phys; 2000 Jan; 22(1):29-37. PubMed ID: 10817946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new oscillometry-based method for estimating the brachial arterial compliance under loaded conditions.
    Liu SH; Wang JJ; Huang KS
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2463-70. PubMed ID: 18838372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of the oscillometric maximum and the systolic and diastolic detection ratios.
    Drzewiecki G; Hood R; Apple H
    Ann Biomed Eng; 1994; 22(1):88-96. PubMed ID: 8060030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of tissue mechanical properties on cuff-based blood pressure measurements.
    Lan H; Al-Jumaily AM; Lowe A; Hing W
    Med Eng Phys; 2011 Dec; 33(10):1287-92. PubMed ID: 21752691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaotic oscillations in a simple collapsible-tube model.
    Jensen OE
    J Biomech Eng; 1992 Feb; 114(1):55-9. PubMed ID: 1491587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow in a brachial artery compressed externally by a pneumatic cuff.
    Shimizu M
    J Biomech Eng; 1992 Feb; 114(1):78-83. PubMed ID: 1491590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of noninvasive blood pressure measurement.
    Hayashi S; Hayase T; Shirai A; Maruyama M
    J Biomech Eng; 2006 Oct; 128(5):680-7. PubMed ID: 16995754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.
    Liu SH; Wang JJ; Cheng DC
    Biomed Tech (Berl); 2009 Aug; 54(4):171-7. PubMed ID: 19807282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible sources of discrepancy between sphygmomanometer cuff pressure and blood pressure quantified in a collapsible-tube analogue.
    Bertram CD; Butcher KS
    J Biomech Eng; 1992 Feb; 114(1):68-77. PubMed ID: 1491589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical validation of a new method to assess aortic pulse wave velocity from a single recording of a brachial artery waveform with an occluding cuff.
    Trachet B; Reymond P; Kips J; Swillens A; De Buyzere M; Suys B; Stergiopulos N; Segers P
    Ann Biomed Eng; 2010 Mar; 38(3):876-88. PubMed ID: 20127171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Korotkoff sound.
    Drzewiecki GM; Melbin J; Noordergraaf A
    Ann Biomed Eng; 1989; 17(4):325-59. PubMed ID: 2774311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of tube length on the buckling pressure of collapsible tubes.
    Zarandi MAF; Garman K; Rhee JS; Woodson BT; Garcia GJM
    Comput Biol Med; 2021 Sep; 136():104693. PubMed ID: 34364260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement.
    Ursino M; Cristalli C
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):761-78. PubMed ID: 9216149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the bifurcation behaviour of a model of flow through a collapsible tube.
    Armitstead JP; Bertram CD; Jensen OE
    Bull Math Biol; 1996 Jul; 58(4):611-41. PubMed ID: 8756267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleeve device functions as a Starling resistor to record sphincter pressure.
    Linehan JH; Dent J; Dodds WJ; Hogan WJ
    Am J Physiol; 1985 Feb; 248(2 Pt 1):G251-5. PubMed ID: 3970206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of wave speed and compliance in a collapsible tube during self-excited oscillations: a test of the choking hypothesis.
    Bertram CD; Raymond CJ
    Med Biol Eng Comput; 1991 Sep; 29(5):493-500. PubMed ID: 1817211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure--part ii.
    Mauck GW; Smith CR; Geddes LA; Bourland JD
    J Biomech Eng; 1980 Feb; 102(1):28-33. PubMed ID: 7382450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energetics of flow through a rapidly oscillating tube with slowly varying amplitude.
    Whittaker RJ; Heil M; Waters SL
    Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1947):2989-3006. PubMed ID: 21690145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of collapsible-tube flows with sinusoidal forced oscillations.
    She J; Bertram CD
    Bull Math Biol; 1996 Nov; 58(6):1023-46. PubMed ID: 8953255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.