These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 2779186)

  • 1. Steady flow through a double converging-diverging tube model for mild coronary stenoses.
    van Dreumel SC; Kuiken GD
    J Biomech Eng; 1989 Aug; 111(3):212-21. PubMed ID: 2779186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological flow simulation in residual human stenoses after coronary angioplasty.
    Banerjee RK; Back LH; Back MR; Cho YI
    J Biomech Eng; 2000 Aug; 122(4):310-20. PubMed ID: 11036553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic evaluation of arterial stenoses by computer simulation.
    Kandarpa K; Davids N; Gardiner GA; Harrington DP; Selwyn A; Levin DC
    Invest Radiol; 1987 May; 22(5):393-403. PubMed ID: 3597007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A zero-dimensional predictive model for the pressure drop in the stenotic coronary artery based on its geometric characteristics.
    Kim J; Jin D; Choi H; Kweon J; Yang DH; Kim YH
    J Biomech; 2020 Dec; 113():110076. PubMed ID: 33152635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamics of coronary artery stenosis.
    Wong AY; Klassen GA; Johnstone DE
    Can J Physiol Pharmacol; 1984 Jan; 62(1):59-69. PubMed ID: 6713284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes.
    Tang D; Yang J; Yang C; Ku DN
    J Biomech Eng; 1999 Oct; 121(5):494-501. PubMed ID: 10529916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow rate-pressure drop relation in coronary angioplasty: catheter obstruction effect.
    Back LH; Kwack EY; Back MR
    J Biomech Eng; 1996 Feb; 118(1):83-9. PubMed ID: 8833078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamics of multiple versus single 50 percent coronary arterial stenoses.
    Sabbah HN; Stein PD
    Am J Cardiol; 1982 Aug; 50(2):276-80. PubMed ID: 7102559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers.
    Ahmed SA; Giddens DP
    J Biomech; 1983; 16(7):505-16. PubMed ID: 6619168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure drop across artificially induced stenoses in the femoral arteries of dogs.
    Young DF; Cholvin NR; Roth AC
    Circ Res; 1975 Jun; 36(6):735-43. PubMed ID: 1132067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catheter obstruction effect on pulsatile flow rate--pressure drop during coronary angioplasty.
    Banerjee RK; Back LH; Back MR; Cho YI
    J Biomech Eng; 1999 Jun; 121(3):281-9. PubMed ID: 10396693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid dynamics of coronary artery stenosis.
    Mates RE; Gupta RL; Bell AC; Klocke FJ
    Circ Res; 1978 Jan; 42(1):152-62. PubMed ID: 618597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of intra-aortic balloon counterpulsation on coronary blood flow velocity distal to coronary artery stenoses.
    Anderson RD; Gurbel PA
    Cardiology; 1996; 87(4):306-12. PubMed ID: 8793165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of steady flow in a model of the aortic bifurcation.
    Thiriet M; Pares C; Saltel E; Hecht F
    J Biomech Eng; 1992 Feb; 114(1):40-9. PubMed ID: 1491585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement and prediction of flow through a replica segment of a mildly atherosclerotic coronary artery of man.
    Back LH; Radbill JR; Cho YI; Crawford DW
    J Biomech; 1986; 19(1):1-17. PubMed ID: 3949812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of stenotic dimensions and blood flow on the hemodynamic significance of model coronary arterial stenoses.
    Lipscomb K; Hooten S
    Am J Cardiol; 1978 Nov; 42(5):781-92. PubMed ID: 707291
    [No Abstract]   [Full Text] [Related]  

  • 18. A novel design of a noncylindric stent with beneficial effects on flow characteristics: an experimental and numerical flow study in an axisymmetric arterial model with sequential mild stenoses.
    Papaioannou TG; Christofidis CCh; Mathioulakis DS; Stefanadis CI
    Artif Organs; 2007 Aug; 31(8):627-38. PubMed ID: 17651118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic uncertainties during assessment of serial coronary stenoses: an in vitro study.
    D'Souza GA; Peelukhana SV; Banerjee RK
    J Biomech Eng; 2014 Feb; 136(2):021026. PubMed ID: 24362785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The coronary hemodynamics of left main and branch coronary stenoses. The effects of reduction in stenosis diameter, stenosis length, and number of stenoses.
    Feldman RL; Nichols WW; Pepine CJ; Conetta DA; Conti CR
    J Thorac Cardiovasc Surg; 1979 Mar; 77(3):377-88. PubMed ID: 762981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.