These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2779189)

  • 1. A preliminary theoretical study of arterial pressure perturbations under shock acceleration.
    Belardinelli E; Ursino M; Iemmi E
    J Biomech Eng; 1989 Aug; 111(3):233-40. PubMed ID: 2779189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A linear propagation model adapted to the study of fast perturbations in arterial hemodynamics.
    Belardinelli E; Ursino M; Fabbri G
    Comput Biol Med; 1991; 21(3):97-110. PubMed ID: 1914449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled fluid-structure interaction hemodynamics in a zero-pressure state corrected arterial geometry.
    Vavourakis V; Papaharilaou Y; Ekaterinaris JA
    J Biomech; 2011 Sep; 44(13):2453-60. PubMed ID: 21762918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure changes induced by whole body acceleration shocks.
    Belardinelli E; Ursino M; Fabbri G; Cevese A; Schena F
    J Biomech Eng; 1991 Feb; 113(1):27-9. PubMed ID: 2020172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and adaptation of arteries to pulsatile flow: the case of the ascending aorta.
    Silva C; Reis AH
    Med Phys; 2014 Jun; 41(6):063701. PubMed ID: 24877840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity.
    Kim CS; Kiris C; Kwak D; David T
    J Biomech Eng; 2006 Apr; 128(2):194-202. PubMed ID: 16524330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The influence of pressure and temperature on the behavior of the human aorta and carotid arteries].
    Atienza JM; Guinea GV; Rojo FJ; Burgos RJ; García-Montero C; Goicolea FJ; Aragoncillo P; Elices M
    Rev Esp Cardiol; 2007 Mar; 60(3):259-67. PubMed ID: 17394871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic effects of compliance mismatch in stented arteries.
    Selvarasu NK; Tafti DK; Vlachos PP
    J Biomech Eng; 2011 Feb; 133(2):021008. PubMed ID: 21280880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pulsatile hemodynamics--arterial blood flow wave obtained by pressure gradient].
    Sugawara H
    Nihon Rinsho; 1968 Oct; 26(10):2490-6. PubMed ID: 5752019
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of blood flow through a model of the human arterial system under periodic body acceleration.
    Sud VK; Sekhon GS
    J Biomech; 1986; 19(11):929-41. PubMed ID: 3793741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of central arterial compliance on cerebrovascular hemodynamics: insights from endurance training intervention.
    Tomoto T; Sugawara J; Nogami Y; Aonuma K; Maeda S
    J Appl Physiol (1985); 2015 Sep; 119(5):445-51. PubMed ID: 26139214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial mechanics in the fin whale suggest a unique hemodynamic design.
    Shadwick RE; Gosline JM
    Am J Physiol; 1994 Sep; 267(3 Pt 2):R805-18. PubMed ID: 8092327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional stress distribution in arteries.
    Chuong CJ; Fung YC
    J Biomech Eng; 1983 Aug; 105(3):268-74. PubMed ID: 6632830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance-based outflow boundary conditions for human carotid haemodynamics.
    Malvè M; Chandra S; García A; Mena A; Martínez MA; Finol EA; Doblaré M
    Comput Methods Biomech Biomed Engin; 2014; 17(11):1248-60. PubMed ID: 23387938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics.
    Satcher RL; Bussolari SR; Gimbrone MA; Dewey CF
    J Biomech Eng; 1992 Aug; 114(3):309-16. PubMed ID: 1522724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the interaction among several mechanisms in the short-term arterial pressure control.
    Ursino M
    Stud Health Technol Inform; 2000; 71():139-61. PubMed ID: 10977596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.