These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 277919)
1. Role of nucleotides in tubulin polymerization: effect of guanosine 5'-methylene diphosphonate. Sandoval IV; Jameson JL; Niedel J; MacDonald E; Cuatrecasas P Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3178-82. PubMed ID: 277919 [TBL] [Abstract][Full Text] [Related]
2. Interactions of tubulin with guanine nucleotides that have paclitaxel-like effects on tubulin assembly: 2',3'-dideoxyguanosine 5'-[alpha,beta-methylene]triphosphate, guanosine 5'-[alpha,beta-methylene]triphosphate, and 2',3'-dideoxyguanosine 5'-triphosphate. Hamel E; Vaughns J; Getahun Z; Johnson R; Lin CM Arch Biochem Biophys; 1995 Oct; 322(2):486-99. PubMed ID: 7574725 [TBL] [Abstract][Full Text] [Related]
3. Role of nucleotides in tubulin polymerization: effect of guanylyl 5'-methylenediphosphonate. Sandoval IV; MacDonald E; Jameson JL; Cuatrecasas P Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4881-5. PubMed ID: 200938 [TBL] [Abstract][Full Text] [Related]
4. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site. Hamel E; Lin CM Biochemistry; 1990 Mar; 29(11):2720-9. PubMed ID: 2346744 [TBL] [Abstract][Full Text] [Related]
5. Guanasone 5'-(alpha,beta-methylene)triphosphate enhances specifically microtubule nucleation and stops the treadmill of tubulin protomers. Sandoval IV; Weber K J Biol Chem; 1980 Jul; 255(14):6966-74. PubMed ID: 7391061 [TBL] [Abstract][Full Text] [Related]
6. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis. Hamel E; Batra JK; Lin CM Biochemistry; 1986 Nov; 25(22):7054-62. PubMed ID: 3026443 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of tubulin polymerization with ribose-modified analogs of GDP and GTP. Reduced inhibition with microtubule-associated proteins and magnesium. Hamel E; Lin CM Biochim Biophys Acta; 1984 Jan; 797(1):117-27. PubMed ID: 6419783 [TBL] [Abstract][Full Text] [Related]
8. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin. Hamel E; Lustbader J; Lin CM Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023 [TBL] [Abstract][Full Text] [Related]
9. Quantification and properties of tubulin polymerization in crude brain extracts and preparations of microtubular and purified tubulin. Sandoval IV; Cuatrecasas P Eur J Biochem; 1978 Nov; 91(1):151-61. PubMed ID: 720333 [TBL] [Abstract][Full Text] [Related]
10. Properties of tubulin treated with alkaline phosphatase to remove guanine nucleotides from the exchangeable binding site. Purich DL; MacNeal RK FEBS Lett; 1978 Dec; 96(1):83-6. PubMed ID: 729795 [No Abstract] [Full Text] [Related]
11. Cells injected with guanosine 5'-[alpha, beta-methylene]triphosphate, an alpha, beta-nonhydrolyzable analog of GTP, show anomalous patterns of tubulin polymerization affecting cell translocation, intracellular movement, and the organization of Golgi elements. Wehland J; Sandoval IV Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1938-41. PubMed ID: 6572952 [TBL] [Abstract][Full Text] [Related]
12. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Carlier MF; Didry D; Pantaloni D Biochemistry; 1987 Jul; 26(14):4428-37. PubMed ID: 3663597 [TBL] [Abstract][Full Text] [Related]
13. Dephosphorylation of tubulin-bound guanosine triphosphate during microtubule assembly. Kobayashi T J Biochem; 1975 Jun; 77(6):1193-7. PubMed ID: 1225903 [TBL] [Abstract][Full Text] [Related]
14. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules. Weisenberg RC; Deery WJ; Dickinson PJ Biochemistry; 1976 Sep; 15(19):4248-54. PubMed ID: 963034 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis. Vulevic B; Correia JJ Biophys J; 1997 Mar; 72(3):1357-75. PubMed ID: 9138581 [TBL] [Abstract][Full Text] [Related]
16. Interaction of tubulin with ribose-modified analogs of GTP and GDP: evidence for two mutually exclusive exchangeable nucleotide binding sites. Hamel E; Lin CM Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3368-72. PubMed ID: 6943545 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of GTP hydrolysis in tubulin polymerization: characterization of the kinetic intermediate microtubule-GDP-Pi using phosphate analogues. Carlier MF; Didry D; Simon C; Pantaloni D Biochemistry; 1989 Feb; 28(4):1783-91. PubMed ID: 2719934 [TBL] [Abstract][Full Text] [Related]
18. Assembly of microtubules from nucleotide-depleted tubulin. Bayley PM; Manser EJ Nature; 1985 Dec 19-1986 Jan 1; 318(6047):683-5. PubMed ID: 3001532 [TBL] [Abstract][Full Text] [Related]
19. Guanosine 5'-O-(3-thiotriphosphate), a potent nucleotide inhibitor of microtubule assembly. Hamel E; Lin CM J Biol Chem; 1984 Sep; 259(17):11060-9. PubMed ID: 6381495 [TBL] [Abstract][Full Text] [Related]
20. Interactions of tubulin with guanylyl-(beta-gamma-methylene)diphosphonate. Formation and assembly of a stoichiometric complex. Seckler R; Wu GM; Timasheff SN J Biol Chem; 1990 May; 265(13):7655-61. PubMed ID: 2332445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]