These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 27792205)
1. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. Fashola MO; Ngole-Jeme VM; Babalola OO Int J Environ Res Public Health; 2016 Oct; 13(11):. PubMed ID: 27792205 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China. Chen M; Lu W; Hou Z; Zhang Y; Jiang X; Wu J Environ Sci Pollut Res Int; 2017 Jan; 24(3):3084-3096. PubMed ID: 27858269 [TBL] [Abstract][Full Text] [Related]
3. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Li Z; Ma Z; van der Kuijp TJ; Yuan Z; Huang L Sci Total Environ; 2014 Jan; 468-469():843-53. PubMed ID: 24076505 [TBL] [Abstract][Full Text] [Related]
4. Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea. Jung MC Environ Geochem Health; 2008 Jun; 30(3):205-17. PubMed ID: 17687627 [TBL] [Abstract][Full Text] [Related]
5. Environmental effects of heavy metals derived from the e-waste recycling activities in China: a systematic review. Song Q; Li J Waste Manag; 2014 Dec; 34(12):2587-94. PubMed ID: 25242606 [TBL] [Abstract][Full Text] [Related]
6. The spatial distribution and accumulation characteristics of heavy metals in steppe soils around three mining areas in Xilinhot in Inner Mongolia, China. Gao Y; Liu H; Liu G Environ Sci Pollut Res Int; 2017 Nov; 24(32):25416-25430. PubMed ID: 28932981 [TBL] [Abstract][Full Text] [Related]
7. Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to 'clean-up' heavy metal contaminants from water. Nanda M; Kumar V; Sharma DK Aquat Toxicol; 2019 Jul; 212():1-10. PubMed ID: 31022608 [TBL] [Abstract][Full Text] [Related]
8. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment. Méndez-Rodríguez LC; Alvarez-Castañeda ST Bull Environ Contam Toxicol; 2016 Jul; 97(1):44-9. PubMed ID: 27207229 [TBL] [Abstract][Full Text] [Related]
9. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Liu G; Wang J; Zhang E; Hou J; Liu X Environ Sci Pollut Res Int; 2016 May; 23(9):8709-20. PubMed ID: 26801928 [TBL] [Abstract][Full Text] [Related]
10. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations. Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227 [TBL] [Abstract][Full Text] [Related]
11. Heavy metal pollution in sub-Saharan Africa and possible implications in cancer epidemiology. Fasinu P; Orisakwe OE Asian Pac J Cancer Prev; 2013; 14(6):3393-402. PubMed ID: 23886118 [TBL] [Abstract][Full Text] [Related]
12. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. Kapusta P; Sobczyk Ł Sci Total Environ; 2015 Dec; 536():517-526. PubMed ID: 26233783 [TBL] [Abstract][Full Text] [Related]
13. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal). Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148 [TBL] [Abstract][Full Text] [Related]
14. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Bempah CK; Ewusi A Environ Monit Assess; 2016 May; 188(5):261. PubMed ID: 27037696 [TBL] [Abstract][Full Text] [Related]
15. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833 [TBL] [Abstract][Full Text] [Related]
16. Tolerance and growth kinetics of bacteria isolated from gold and gemstone mining sites in response to heavy metal concentrations. Oladipo OG; Ezeokoli OT; Maboeta MS; Bezuidenhout JJ; Tiedt LR; Jordaan A; Bezuidenhout CC J Environ Manage; 2018 Apr; 212():357-366. PubMed ID: 29454247 [TBL] [Abstract][Full Text] [Related]
17. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment - A review. Mathivanan K; Chandirika JU; Vinothkanna A; Yin H; Liu X; Meng D Ecotoxicol Environ Saf; 2021 Dec; 226():112863. PubMed ID: 34619478 [TBL] [Abstract][Full Text] [Related]
18. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Yamina B; Tahar B; Marie Laure F Water Sci Technol; 2012; 66(10):2041-8. PubMed ID: 22949232 [TBL] [Abstract][Full Text] [Related]
19. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Navarro CA; von Bernath D; Jerez CA Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139 [TBL] [Abstract][Full Text] [Related]
20. Heavy Metal Pollution and Ecological Risk Assessment of the Agriculture Soil in Xunyang Mining Area, Shaanxi Province, Northwestern China. Zhu D; Wei Y; Zhao Y; Wang Q; Han J Bull Environ Contam Toxicol; 2018 Aug; 101(2):178-184. PubMed ID: 29947911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]