BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27792227)

  • 1. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration.
    Cheng Y; Wang Y; Ma Z; Wang W; Ye X
    Lab Chip; 2016 Nov; 16(23):4517-4526. PubMed ID: 27792227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.
    Cheng Y; Ye X; Ma Z; Xie S; Wang W
    Biomicrofluidics; 2016 Jan; 10(1):014118. PubMed ID: 26909124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic on-chip bacteria separation and preconcentration.
    Ryzhkov VV; Zverev AV; Echeistov VV; Andronic M; Ryzhikov IA; Budashov IA; Eremenko AV; Kurochkin IN; Rodionov IA
    Sci Rep; 2020 Dec; 10(1):21107. PubMed ID: 33273691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled incremental filtration: a simplified approach to design and fabrication of high-throughput microfluidic devices for selective enrichment of particles.
    Gifford SC; Spillane AM; Vignes SM; Shevkoplyas SS
    Lab Chip; 2014 Dec; 14(23):4496-505. PubMed ID: 25254358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics.
    Yamada M; Seki M
    Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clogging-free microfluidics for continuous size-based separation of microparticles.
    Yoon Y; Kim S; Lee J; Choi J; Kim RK; Lee SJ; Sul O; Lee SB
    Sci Rep; 2016 May; 6():26531. PubMed ID: 27198601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Particle Separation and Detection System Based on Standing Surface Acoustic Wave and Lensless Imaging.
    Chen J; Huang X; Xu X; Wang R; Wei M; Han W; Cao J; Xuan W; Ge Y; Wang J; Sun L; Luo JK
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2165-2175. PubMed ID: 34951837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous blood cell separation by hydrophoretic filtration.
    Choi S; Song S; Choi C; Park JK
    Lab Chip; 2007 Nov; 7(11):1532-8. PubMed ID: 17960282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-sorting centrifugal microfluidic chip with a flow rectifier.
    Ma J; Wu Y; Liu Y; Ji Y; Yang M; Zhu H
    Lab Chip; 2021 Jun; 21(11):2129-2141. PubMed ID: 33928337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A double tangential flow filtration-based microfluidic device for highly efficient separation and enrichment of exosomes.
    Hua X; Zhu Q; Liu Y; Zhou S; Huang P; Li Q; Liu S
    Anal Chim Acta; 2023 Jun; 1258():341160. PubMed ID: 37087290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolysis-free blood plasma separation.
    Son JH; Lee SH; Hong S; Park SM; Lee J; Dickey AM; Lee LP
    Lab Chip; 2014 Jul; 14(13):2287-92. PubMed ID: 24825250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing.
    Chiu YY; Huang CK; Lu YW
    Biomicrofluidics; 2016 Jan; 10(1):011906. PubMed ID: 26858812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis.
    Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS
    Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic microfluidic platform for cell separation and nucleus collection.
    Tai CH; Hsiung SK; Chen CY; Tsai ML; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):533-43. PubMed ID: 17508288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bioinspired, passive microfluidic lobe filtration system.
    Clark AS; San-Miguel A
    Lab Chip; 2021 Sep; 21(19):3762-3774. PubMed ID: 34581374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput dielectrophoretic filtration of sub-micron and micro particles in macroscopic porous materials.
    Lorenz M; Malangré D; Du F; Baune M; Thöming J; Pesch GR
    Anal Bioanal Chem; 2020 Jun; 412(16):3903-3914. PubMed ID: 32198531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle sorting using a porous membrane in a microfluidic device.
    Wei H; Chueh BH; Wu H; Hall EW; Li CW; Schirhagl R; Lin JM; Zare RN
    Lab Chip; 2011 Jan; 11(2):238-45. PubMed ID: 21057685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.