These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27792227)

  • 41. Advection Flows-Enhanced Magnetic Separation for High-Throughput Bacteria Separation from Undiluted Whole Blood.
    Jung SH; Hahn YK; Oh S; Kwon S; Um E; Choi S; Kang JH
    Small; 2018 Aug; 14(34):e1801731. PubMed ID: 30044534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Performance Passive Plasma Separation on OSTE Pillar Forest.
    Xiao Z; Sun L; Yang Y; Feng Z; Dai S; Yang H; Zhang X; Sheu CL; Guo W
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microfluidic device based on a micro-hydrocyclone for particle-liquid separation.
    Bhardwaj P; Bagdi P; Sen AK
    Lab Chip; 2011 Dec; 11(23):4012-21. PubMed ID: 22028066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A multilayer concentric filter device to diminish clogging for separation of particles and microalgae based on size.
    Chen CC; Chen YA; Liu YJ; Yao DJ
    Lab Chip; 2014 Apr; 14(8):1459-68. PubMed ID: 24615295
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of bacterial streamers induced clogging in microfluidic devices.
    Hassanpourfard M; Ghosh R; Thundat T; Kumar A
    Lab Chip; 2016 Oct; 16(21):4091-4096. PubMed ID: 27713995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells.
    Fan X; Jia C; Yang J; Li G; Mao H; Jin Q; Zhao J
    Biosens Bioelectron; 2015 Sep; 71():380-386. PubMed ID: 25950932
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flow induced particle separation and collection through linear array pillar microfluidics device.
    Balyan P; Saini D; Das S; Kumar D; Agarwal A
    Biomicrofluidics; 2020 Mar; 14(2):024103. PubMed ID: 32206158
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator.
    Lin BK; McFaul SM; Jin C; Black PC; Ma H
    Biomicrofluidics; 2013; 7(3):34114. PubMed ID: 24404034
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration.
    Clime L; Hoa XD; Corneau N; Morton KJ; Luebbert C; Mounier M; Brassard D; Geissler M; Bidawid S; Farber J; Veres T
    Biomed Microdevices; 2015 Feb; 17(1):17. PubMed ID: 25653055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colloidal surface interactions and membrane fouling: investigations at pore scale.
    Bacchin P; Marty A; Duru P; Meireles M; Aimar P
    Adv Colloid Interface Sci; 2011 May; 164(1-2):2-11. PubMed ID: 21130419
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.
    Didar TF; Li K; Veres T; Tabrizian M
    Biomaterials; 2013 Jul; 34(22):5588-93. PubMed ID: 23628474
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification.
    Chen X; Cui D; Liu C; Li H; Chen J
    Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-throughput rare cell separation from blood samples using steric hindrance and inertial microfluidics.
    Shen S; Ma C; Zhao L; Wang Y; Wang JC; Xu J; Li T; Pang L; Wang J
    Lab Chip; 2014 Jul; 14(14):2525-38. PubMed ID: 24862501
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bubble-free operation of a microfluidic free-flow electrophoresis chip with integrated Pt electrodes.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2008 Jun; 80(11):4111-8. PubMed ID: 18435546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.
    Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC
    Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures.
    Uhlmann P; Varnik F; Truman P; Zikos G; Moulin JF; Müller-Buschbaum P; Stamm M
    J Phys Condens Matter; 2011 May; 23(18):184123. PubMed ID: 21508469
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip.
    Huang T; Jia CP; Jun-Yang ; Sun WJ; Wang WT; Zhang HL; Cong H; Jing FX; Mao HJ; Jin QH; Zhang Z; Chen YJ; Li G; Mao GX; Zhao JL
    Biosens Bioelectron; 2014 Jan; 51():213-8. PubMed ID: 23962709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.