These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 27792283)
1. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells. Wang YL; Lin SP; Nelli SR; Zhan FK; Cheng H; Lai TS; Yeh MY; Lin HC; Hung SC Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27792283 [TBL] [Abstract][Full Text] [Related]
2. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Zhou M; Smith AM; Das AK; Hodson NW; Collins RF; Ulijn RV; Gough JE Biomaterials; 2009 May; 30(13):2523-30. PubMed ID: 19201459 [TBL] [Abstract][Full Text] [Related]
3. Arginine-Presenting Peptide Hydrogels Decorated with Hydroxyapatite as Biomimetic Scaffolds for Bone Regeneration. Ghosh M; Halperin-Sternfeld M; Grigoriants I; Lee J; Nam KT; Adler-Abramovich L Biomacromolecules; 2017 Nov; 18(11):3541-3550. PubMed ID: 28825801 [TBL] [Abstract][Full Text] [Related]
4. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release. Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel. Gong X; Branford-White C; Tao L; Li S; Quan J; Nie H; Zhu L Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():478-86. PubMed ID: 26478335 [TBL] [Abstract][Full Text] [Related]
6. Substrate stiffness and sequence dependent bioactive peptide hydrogels influence the chondrogenic differentiation of human mesenchymal stem cells. Mohammed M; Lai TS; Lin HC J Mater Chem B; 2021 Feb; 9(6):1676-1685. PubMed ID: 33491723 [TBL] [Abstract][Full Text] [Related]
7. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Shi W; Huang CJ; Xu XD; Jin GH; Huang RQ; Huang JF; Chen YN; Ju SQ; Wang Y; Shi YW; Qin JB; Zhang YQ; Liu QQ; Wang XB; Zhang XH; Chen J Acta Biomater; 2016 Nov; 45():247-261. PubMed ID: 27592818 [TBL] [Abstract][Full Text] [Related]
8. Modulation of the stemness and osteogenic differentiation of human mesenchymal stem cells by controlling RGD concentrations of poly(carboxybetaine) hydrogel. Chien HW; Fu SW; Shih AY; Tsai WB Biotechnol J; 2014 Dec; 9(12):1613-23. PubMed ID: 25303097 [TBL] [Abstract][Full Text] [Related]
9. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. Kim JE; Kim SH; Jung Y J Biosci Bioeng; 2015 Jul; 120(1):91-8. PubMed ID: 25540912 [TBL] [Abstract][Full Text] [Related]
10. Injectable Magnetic-Responsive Short-Peptide Supramolecular Hydrogels: Ex Vivo and In Vivo Evaluation. Mañas-Torres MC; Gila-Vilchez C; Vazquez-Perez FJ; Kuzhir P; Momier D; Scimeca JC; Borderie A; Goracci M; Burel-Vandenbos F; Blanco-Elices C; Rodriguez IA; Alaminos M; de Cienfuegos LÁ; Lopez-Lopez MT ACS Appl Mater Interfaces; 2021 Oct; 13(42):49692-49704. PubMed ID: 34645258 [TBL] [Abstract][Full Text] [Related]
11. Composite of Peptide-Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bio-Inspired Soft Material. Chakraborty P; Ghosh M; Schnaider L; Adadi N; Ji W; Bychenko D; Dvir T; Adler-Abramovich L; Gazit E Macromol Rapid Commun; 2019 Sep; 40(18):e1900175. PubMed ID: 31347237 [TBL] [Abstract][Full Text] [Related]
12. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels. Mehta M; Madl CM; Lee S; Duda GN; Mooney DJ J Biomed Mater Res A; 2015 Nov; 103(11):3516-25. PubMed ID: 25953514 [TBL] [Abstract][Full Text] [Related]
14. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels. Van Nieuwenhove I; Salamon A; Adam S; Dubruel P; Van Vlierberghe S; Peters K Carbohydr Polym; 2017 Apr; 161():295-305. PubMed ID: 28189242 [TBL] [Abstract][Full Text] [Related]
15. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds. Kim J; Hefferan TE; Yaszemski MJ; Lu L Tissue Eng Part A; 2009 Aug; 15(8):2299-307. PubMed ID: 19292677 [TBL] [Abstract][Full Text] [Related]
16. Peptide-based scaffolds for the culture and maintenance of primary human hepatocytes. MacPherson D; Bram Y; Park J; Schwartz RE Sci Rep; 2021 Mar; 11(1):6772. PubMed ID: 33762604 [TBL] [Abstract][Full Text] [Related]
17. UV Light-Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery. Roth-Konforti ME; Comune M; Halperin-Sternfeld M; Grigoriants I; Shabat D; Adler-Abramovich L Macromol Rapid Commun; 2018 Dec; 39(24):e1800588. PubMed ID: 30276909 [TBL] [Abstract][Full Text] [Related]
18. Self-Assembled Peptide-Carbon Nitride Hydrogel as a Light-Responsive Scaffold Material. Ko JW; Choi WS; Kim J; Kuk SK; Lee SH; Park CB Biomacromolecules; 2017 Nov; 18(11):3551-3556. PubMed ID: 28825470 [TBL] [Abstract][Full Text] [Related]
19. A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. Zhao C; Qazvini NT; Sadati M; Zeng Z; Huang S; De La Lastra AL; Zhang L; Feng Y; Liu W; Huang B; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Liu B; Lei Y; Ye Z; Zhao L; Cao D; Yang L; Chen X; Athiviraham A; Lee MJ; Wolf JM; Reid RR; Tirrell M; Huang W; de Pablo JJ; He TC ACS Appl Mater Interfaces; 2019 Mar; 11(9):8749-8762. PubMed ID: 30734555 [TBL] [Abstract][Full Text] [Related]
20. Osteoblastic differentiation on hydrogels fabricated from Ca Tsutsumi H; Kawamura M; Mihara H Bioorg Med Chem; 2018 Jul; 26(12):3126-3132. PubMed ID: 29699909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]